
LEGEND-MC

User’s Manual

Upon receipt of the product and prior to initial operation, read these instructions
thoroughly, and retain for future reference

LEGEND-MC User’s Manual
YASKAWA manufactures component parts that can be used in a wide variety
of industrial applications. The selection and application of YASKAWA
products remain the responsibility of the equipment designer or end user.
YASKAWA accepts no responsibility for the way its products may be
incorporated into the final system design.

Under no circumstances should any YASKAWA product be incorporated into
any product or design as the exclusive or sole safety control. Without
exception, all controls should be designed to detect faults dynamically under
all circumstances. All products designed to incorporate a component part
manufactured by YASKAWA must be supplied to the end user with
appropriate warnings and instructions as to that part’s safe use and operation.
Any warnings provided by Yaskawa must be promptly provided to the end
user.

YASKAWA offers an express warranty only as to the quality of its products in
conforming to standards and specifications published in YASKAWA’S
manual. NO OTHER WARRANTY, EXPRESS OR IMPLIED, IS
OFFERED. YASKAWA assumes no liability for any personal injury, property
damage, losses or claims arising from misapplication of its products.

WARNING

LEGEND-MC User’s Manual
TABLE OF CONTENTS
1 Introduction ...1

Part Numbers ...2
Start-up ..3

Mounting the LEGEND-MC to the LEGEND Amplifier ..3
Mounting Orientation ..3

Front Panel Description ... 4
Power/Connections Wiring - Single Phase ..5
Power/Connections Wiring - Three Phase ...6
Cable Shielding, Segregation and Noise Immunity ...7
I/O Connections (50-pin CN5) ...8
Analog I/O ..9

Analog Input ..9
Analog Output ...10

Digital I/O ...11
Digital Input ...11
Digital Output ...12

Emergency Stop Chain ..13
Serial Communication ..14
External Encoder Specifications ..15
Dedicated Inputs ..16
Physical Specifications ..17
Hardware Specifications ..17
Cable Diagram and Dimensional Drawings ...18

I/O Cable with Terminal Block JUSP-TA50P ..18
2 Theory of Operation ...21

Overview ..21
Level ..22
Operation of Closed-Loop Systems ...24
System Modeling ...25

Controller ..25
Motor-Amplifier ...25
Current Drive ..25
Encoder ..26
DAC ..26
Digital Filter ...26
ZOH ..27

System Analysis ..27
System Design and Compensation ...30

The Analytical Method ..30
Notch Filter ...32

3 Communications ..37
Introduction ..37

Controller Response to Data ..37
RS232 Port ...37

SMC Protocol Guidelines ...38
Ethernet Configuration ...39

Communication Protocols ...39
Addressing ..40
Ethernet Handles ..40
Global vs. Local Operation ...41
Configuring Operation for Distributed Control
(Obsolete Method < 1.0c firmware) ..42
Operation of Distributed Control ...42
Accessing the I/O of the slaves ..43

LEGEND-MC User’s Manual
Handling Communication Errors ...43
Modbus Support ...43
Communicating with Multiple Devices ..45
Multicasting ...45
Using Third Party Software ...45

4 Command Reference ..47
Command Description ...51
AB (Abort) ..53
@ABS (Absolute Value) ..54
AC (Acceleration) ...55
@ACOS (Arc Cosine) ..56
AD (After Distance) ..57
AF (Analog Feedback) ...58
AI (After Input) ...59
AL (Arm Latch) ...60
AM (After Motion) ...61
@AN (Analog Input) ...62
AO (Analog Out) ..63
AP (After Absolute Position) ..64
AR (After Relative) ...65
AS (At Speed) ..66
@ASIN (Arc Sine) ..67
AT (After Time) ..68
@ATAN (Arc Tangent) ...69
BG (Begin) ...70
BL (Backward Limit) ...71
BN (Burn Parameters) ...72
BP (Burn Program) ..73
BV (Burn Variables) ...74
CB (Clear Bit) ...75
CD (Contour Data) ...77
CE (Configure Encoder) ..78
CF (Configure Messages) ..79
CH (Connect Handle) ..80
CM (Contour Mode) ...82
CN (Configure Limit Switches) ...83
@COM (2’s Complement) ...84
@COS (Cosine) ...85
CS (Clear Sequence) ...86
CW (Copyright) ..87
DA (De-allocate Variables) ..88
DB (Dynamic Brake) ..89
DC (Deceleration) ..90
DE (Dual (Auxiliary) Encoder) ..91
DL (Download) ...92
DM (Dimension Array) ...93
DP (Define Position) ..94
DT (Delta Time) ...95
DV (Dual Velocity (Dual Loop)) ..96
EA (ECAM Master) ..97
EB (ECAM Enable) ..98
EC (ECAM Counter) ..99
ED (Edit Mode) ..100
EG (ECAM Engage) ..102
ELSE ..103
EM (ECAM Cycle) ..104

LEGEND-MC User’s Manual
EN (End) ..105
ENDIF ..106
EO (Echo) ..107
EP (ECam Table Intervals and Start Point) ...108
EQ (ECam Quit (Disengage)) ..109
ER (Error Limit) ..110
ET (ECam Table) ...111
FA (Acceleration Feedforward) ..112
FE (Find Edge) ..113
FI (Find Index) ...114
FL (Forward Limit) ...115
@FRAC (Fraction) ...116
FV (Velocity Feedforward) ...117
GA (Master Axis for Gearing) ..118
GR (Gear Ratio) ...119
HC (Handle Configuration) ..120
HM (Home) ..122
HR (Handle Restore) ...123
HS (Handle Switch) ...124
HW (Handle Wait) ..125
HX (Halt Execution) ...126
IA (Internet Address) ..127
IF ..128
IH (Internet Handle) ...129
II (Input Interrupt) ...131
IL (Integrator Limit) ..133
IN (Input Variable) ..134
@IN (Input) ..135
@INT (Integer) ...137
IP (Increment Position) ..138
IT (Independent Time Constant) ..139
JG (Jog) ...140
JP (Jump to Program Location) ...141
JS (Jump to Subroutine) ..142
KD (Derivative Constant) ...143
KI (Integrator) ...144
KP (Proportional Constant) ..145
LA (List Arrays) ..146
LC (Lock Controller) ...147
LE (Linear Interpolation End) ...148
_LF* (Forward Limit) ..149
LI (Linear Interpolation) ..150
LL (List Labels) ..152
LM (Linear Mode) ..153
LO (Lockout) ..154
_LR* (Reverse Limit) ...155
LS (List Program) ...156
LT (Latch Target) ...157
LV (List Variables) ...158
LZ (Leading Zeros) ..159
MB (Modbus) ...160
MC (Motion Complete) ...162
MF (Motion Forward) ...163
MG (Message) ...164
MM (Master’s Modulus) ...165
MO (Motor Off) ...166

LEGEND-MC User’s Manual
MR (Motion Reverse) ...167
MT (Motor Type) ..168
MW (Modbus Wait) ..169
NA (Number of Axes) ...170
NB (Notch Bandwidth) ...171
NF (Notch Filter) ..172
NO (No Operation) ...173
NZ (Notch Zero) ...174
OB (Output Bit) ..175
OC (Output Compare) ...176
OE (Off On Error) ...177
OF (Offset) ...178
OP (Output Port) ..179
@OUT (Output) ...180
PA (Position Absolute) ...181
PF (Position Format) ..182
PN (Legend Parameter) ...184
PR (Position Relative) ..185
PW (Password) ..186
QD (Download Array) ..187
QL (Query Latch - Auxiliary Encoder) ..188
QR (Data Record) ..189
QU (Upload Array) ...190
QW (Slave Record Update Rate) ..191
QZ (Return Data Record Information) ...192
RA (Record Array) ...193
RC (Record) ...194
RD (Record Data) ..195
RE (Return from Error) ..197
RI (Return from Interrupt) ..198
RL (Report Latch) ..199
@RND (Round) ...200
RP (Reference Position) ..201
RS (Reset) ...202
<control>R<control>S (Master Reset) ...203
<control>R<control>V (Firmware Revision) ...204
SA (Send Command) ...205
SB (Set Bit) ..206
SC (Stop Code) ...207
SH (Servo Here) ..208
@SIN (Sine) ...209
SP (Speed) ..210
@SQR (Square Root) ..211
ST (Stop) ...212
TA (Tell Alarm) ...213
TB (Tell Status Byte) ..214
TC (Tell Code) ...215
TD (Tell Dual (Auxiliary) Encoder) ...218
TE (Tell Error) ..219
TH (Tell Handle) ..220
TI (Tell Inputs) ..221
TIME (Time Keyword) ..223
TL (Torque Limit) ...224
TM (Time Base) ...225
TP (Tell Position) ...226
TR (Trace Mode) ...227

LEGEND-MC User’s Manual
TS (Tell Switches) ..228
TT (Tell Torque) ...230
TV (Tell Velocity) ...231
TW (Time Wait) ..232
UL (Upload) ...233
VA (Vector Acceleration) ...234
VD (Vector Deceleration) ...235
VE (Vector End) ...236
VF (Variable Format) ...237
VR (Vector Speed Ratio) ...238
VS (Vector Speed) ...239
VT (Vector Time Constant) ..240
WC (Wait for Contour) ...241
WT (Wait) ...242
XQ (Execute Program) ..243
ZS (Zero Subroutine Stack) ...244

5 Programming Basics ..249
Introduction ..249
Program Maximums ...249
Command Syntax ..249
Controller Response to Commands ...251
Command Summary ..252

Motion ...252
Program Flow ...254
General Configuration ...255
Control Filter Settings ...256
Status ..256
Error And Limits ..257
Arithmetic Functions ...257

6 Programming Motion ...259
Overview ..259
Independent Axis Positioning ..261

Command Summary - Independent Axis ..261
Independent Jogging ...263

Command Summary - Jogging ...263
Linear Interpolation Mode ..264

Specifying Linear Segments ...264
Command Summary - Linear Interpolation ...266

Vector Mode: Linear Interpolation Motion ..267
Specifying Vector Segments ...267
Additional Commands ...267
Command Summary - Coordinated Motion Sequence268
Operand Summary - Coordinated Motion Sequence ..269

Electronic Gearing ...270
Command Summary - Electronic Gearing ..270

Electronic Cam ..271
Contour Mode ..275

Specifying Contour Segments ..275
Additional Commands ...276
Command Summary - Contour Mode ...276
General Velocity Profiles ..276

Motion Smoothing ..277
Using the IT and VT Commands (S curve profiling): ..277

Homing ..278
High Speed Position Capture (Latch Function) ...279

LEGEND-MC User’s Manual
7 Application Programming ..281
Introduction ..281
Program Format ...281
Special Labels ...282
Executing Programs - Multitasking ..283
Debugging Programs ...284

Event Triggers & Trippoints ..284
LEGEND-MC Event Triggers ..285
Event Trigger Examples: ..286
Conditional Jumps ..289
Multiple Conditional Statements ...291
If, Else, and Endif ..293
Command Format - IF, ELSE and ENDIF ..294
Subroutines ...295
Stack Manipulation ...296
Auto Start Routine ..296
Automatic Subroutines for Monitoring Conditions ...296

Mathematical and Functional Expressions ..300
Variables ..302

Programmable Variables ..302
Internal Variables & Keywords ..303

Arrays ..306
Defining Arrays ...306
Assignment of Array Entries ...306
Automatic Data Capture into Arrays ...307

8 Input and Output of Data ...311
Sending Messages ..311

Input of Data ...312
Formatting Data ..313
User Units ...315

9 Programmable I/O ...317
Digital Outputs ...317
Digital Inputs ..318

10 Example Applications ..319
Instruction Set Examples ...319

Special Labels ..334
Wire Cutter ..338
Speed Control by Joystick ..339
Position Control by Joystick ..340
Backlash Compensation by Dual-Loop ...341

11 Troubleshooting ...343
Overview ..343
Installation ..343
Stability ..343
Operation ...344

12 Index ..345

LEGEND-MC User’s Manual
1 Introduction

The LEGEND-MC is a single axis Ethernet motion controller designed for use exclu-
sively with Yaskawa’s LEGEND Digital Torque Amplifier.

It provides a structured text programming environment and the ability to perform many
modes of motion including camming, gearing, and contouring. High speed product reg-
istration is also available as a standard feature.

Additionally, point-to-point control and communications over the Ethernet connections
are standard features. The Ethernet function allows multiple handles or devices to com-
municate with the controller.
1

LEGEND-MC User’s Manual
Part Numbers

Description Part Number
SM

C
30

10

a) Motion Controller with Ethernet Interface SMC3010

I/O b)

1.0m 50 Pin I/O Cable JZSP-CKI01-1 (A)

2.0m 50 Pin I/O Cable JZSP-CKI01-2 (A)

3.0m 50 Pin I/O Cable JZSP-CKI01-3 (A)

1.0m 50 Pin I/O Cable (with terminal block) JUSP-TA50P

Se
ria

l

c) 3.0m Port #1 Cable SMCCBL7

So
ftw

ar
e

d)
YTerm Programming Software SMCGUI1

SMC Comm serial + Ethernet driver for
application development for all SMC products SMC0CX1
2

LEGEND-MC User’s Manual
Start-up
Mounting the LEGEND-MC to the LEGEND Amplifier
1. Insert the lower two mounting notches of the LEGEND-MC into the mounting holes at the bottom of the right

side of the LEGEND.
2. Push the LEGEND-MC in the direction indicated by the arrow in the figure below, and insert the upper

mounting notches of the LEGEND-MC into the upper mounting holes on the right side of the LEGEND.

Mounting Orientation
Mount the LEGEND-MC and LEGEND vertically for proper cooling, as shown below. Allow a minimum spacing
of 10mm around the left and right sides and 30mm around the top and bottom of the LEGEND-MC/LEGEND
unit.
3

LEGEND-MC User’s Manual
Front Panel Description
No. Name Description

(1) Power
ON

A green LED that indicates +5 VDC power is
applied properly from the LEGEND-MC
amplifier to the controller.

(2) Alarm/
Error

A red LED that will flash on initially at power
up and stay lit for approximately 1-8 seconds.
After power up, the LED will illuminate for the
following reasons:
•The axis has a position error greater than the
error limit. The error limit is set by using the
command ER.
•The reset line on the controller is held low or
is being affected by noise.
•There is a failure in the controller and the
processor is resetting itself.
•There is a failure in the output IC which
drives the error signal.

(3) CN6 9 pin male D-Sub serial port connector

(4) CN5 3M 50 pin high density I/O connector

(5) RST Reset switch. Causes the controller to reboot,
and load the application program and
parameters from flash. If the program contains
an #AUTO label, it will automatically execute.

(6) Ethernet
status

A green LED that is lit when there is an
Ethernet connection to the controller. This
LED tests only for the physical connection, not
for an active or enabled link.

(7) Ethernet
status

The yellow LED indicates traffic across the
Ethernet connection. This LED will show both
transmit and receive activity across the
connection. If there is no Ethernet connection
or IP address assigned, the LED will flash at
regular intervals to show that the BOOTP
packets are being broadcast.

(8) CN4 10 BaseT Ethernet RJ485 Connector

(9) FG Frame ground spade terminal. Connect to
ground terminal on LEGEND Amplifier

(1)(2)

(3)

(4)

(5)

(7) (6)

(8)

(9)
4

LEGEND-MC User’s Manual
Power/Connections Wiring - Single Phase

Servo ON

2MC

Control
Power
OFF

Control
Power
ON

1MC

1MCCB

Noise Filter

C

5
N

C

6
N

C

4
N

R

T
S

1MC 2MC

SUP

B2

2
N
C

G
F

LEGEND01

YASKAWA

L1

L2
L3
1

2

L1C

B1
L2C

B3

U
V
W

CHARGE POWER

C
N
1

2MC

1MC

Servo
Power
OFF

Emergency
Stop

1MC

SUP

R T

NOTES: The LEGEND-MC receives its power from the LEGEND amplifier through the side interface
connector, however, the digital I/O receives its power from pins 46, 47, 48, and 49 on the I/O connector.

For maximum noise immunity, connect the FG to a ground terminal on the sub panel or to the ground
terminal on the LEGEND.
5

LEGEND-MC User’s Manual
Power/Connections Wiring - Three Phase

C

5
N

C

6
N

C

4
N

R

T
S

B2

2
N
C

G
F

Emergency
Stop

Servo
Power
OFF

2MC

Servo ON

1MC

Control
Power
OFF

Control
Power
ONNoise Filter

1MCCB
R TS

SUP

SUP

2MC

1MC

1MC

LEGEND01

YASKAWA

L1

L2
L3
1

2

L1C

B1
L2C

B3

U
V
W

CHARGE POWER

C
N
1

2MC

1MC

NOTES: The LEGEND-MC receives its power from the LEGEND amplifier through the side interface
connector, however, the digital I/O receives its power from pins 46, 47, 48, and 49 on the I/O connector.

For maximum noise immunity, connect the FG to a ground terminal on the sub panel or to the ground
terminal on the LEGEND.
6

LEGEND-MC User’s Manual
Cable Shielding, Segregation and Noise Immunity

Connector Case
Terminal Block Shields tied

back at device

PROPER
Shield tied back at

terminal block.

b)

SMC 3010
Connector Case

Terminal Block

PROPER
Shield connected across
terminal block.

Shields tied
back at device

a)

PROPER
Shields of field

cables grounded at
one point

Proper

Connector Case
Terminal Block Shields tied

back at device

b)

Connector Case
Terminal Block

WRONG
Shield grounded at

more than one point.

Shields tied
back at device

a)

WRONG
Shields of field

cables ungrounded

Wrong
7

LEGEND-MC User’s Manual
I/O Connections (50-pin CN5)

1
Analog 1

+5 Filtered Output power (60 mA available)
-12 Filtered Output power (10 mA available)
+12 Filtered Output power (10 mA available)

Output compare (requires internal jumper)
External encoder A-
External encoder A+
External encoder B-
External encoder B+
Abort Input
Reverse limit switch
Home Input
Forward limit switch
Reset Input

 E STOP2

 24V GND Input

 E STOP1

24V Power Input
24V GND Input
24V Power Input

CN5

Analog 2

Digital Input 2
Digital Input 1
Digital Input 7
Digital Input 8
Digital Output 4
Digital Output 3
Digital Output 2
Digital Output 1

Analog Output

LEGEND-MC Signal Ground

Digital Input 6
Digital Input 5
Digital Input 4
Digital Input 3

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
8

LEGEND-MC User’s Manual
Analog I/O
Analog Input

Item Specifications

Input Voltage ± 10 V

Input Impedance Approximately 10k Ω

Resolution 14 bits over a ± 10V range or 4.88 mV per bit

1

4

5

28

SMC Signal
Ground

Legend-MC I/O
Connector CN5

2

-12V

12VVCC12V

-12V

DG403
MUX

Internal Circuitry

-12V

Analog 1

Analog 2

+12V

Field Wiring
9

LEGEND-MC User’s Manual
Analog Output

Item Specifications

D/A Output Resolution 16 bit over a ± 10 V range or 328 µV/bit

Output short circuit duration Infinite

Maximum output current 60 mA

-10 ~ 10 V

28
Signal
Ground

Legend-MC I/O
Connector CN5

Analog
Output26

External Device

TL084CN

L

Internal Circuitry Field Wiring
10

LEGEND-MC User’s Manual
Digital I/O
Digital Input

Note: Inputs float high unless the input is held low.

Item Specifications
Number of Input Points 8

Input Format Sinking

Isolation Optical

Voltage 24 VDC ± 20%

Current Rating (ON) 5.3 mA to activate

Input Impedance 2.2k Ω

Operation Voltage Logic 0 <5V
Logic 1 >15V

OFF Current 0.9 mA or less

Response Time OFF to ON: <0.5 ms
ON to OFF: <1.5 ms

Latch response time Less than 25 µsec

Minimum latch width 9 µsec

19 Digital Input 7

20 Digital Input 8

47

Legend-MC I/O
Connector CN5

49

18

17

45

44

43

Internal Circuitry

2.2k

Digital Input 1
 (Main Latch)
Digital Input 2
(External Latch)
Digital Input 3

Digital Input 4

Digital Input 5

24VDC

42 Digital Input 6

Field Wiring
11

LEGEND-MC User’s Manual
Digital Output

NOTE: The ULN 2803 output chip is capable of 600 mA at a single output, or 800mA for the four outputs simultaneously.

Item Specifications
Number of Output Points 4

Output Format Sinking

Output Classification Transistor Output

Isolation Optical

Load Voltage 24 VDC ± 20%

Load Current 200 mA/Output (600 mA if activated individually)

Response Time OFF to ON <0.25 ms
ON to OFF <0.5 ms

External Common Power 24 VDC ± 20% 15 mA

Common User Fuse Rating 1A

Individual User Fuse Rating 200 mA recommended

23

22

21

46

48

L

L

49

Legend-MC I/O
Connector CN5

47

24

Fuse

Digital Output 1

Digital Output 2

Digital Output 3

Digital Output 4

PS2505-4

ULN2803

10k

4
.
7
k

Internal Circuitry
24VDC

L

L

Field Wiring
12

LEGEND-MC User’s Manual
Emergency Stop Chain

25 E STOP2

Legend-MC I/O
Connector CN5

50

VCC

-EROUT

1k

Q1

2N7002

U17

E STOP1

Internal Circuitry Field Wiring

The LEGEND-MC closes the relay contact under normal operating conditions.

Ratings:

1.0A @ 24 VDC
0.5A @ 125 VAC

Maximum switching power: 62.5VA, 30W
13

LEGEND-MC User’s Manual
Serial Communication

Item Specifications

Baud Rate 9600 or 19200 settable by jumper JP1, default is 19200

Data Bits 8

Parity None

Stop Bits 1

6

8

2

3

4

5

C1+
C1-
C2+

Legend-MC Serial
Port Connector CN6

1

Internal Circuitry

CTS Output

7

9

CTS Output

CTS Output

Transmit Output

Receive Input

RTS Input

RTS Input

N/C

Signal Ground

MAX232A

U7

V+

V-

T1OUT

T2OUT

A1IN

A2IN

C2-
T1IN

T2IN

A1OUT

A2OUT

.1 UF

.1 UF

.1 UF

.1 UF

VCC

Field Wiring

NOTE: Hardware handshaking must be used with the LEGEND-MC. If it is impossible to implement
hardware handshaking, use a jumper between pins 1 and 4 in the connector.

NOTE: Do not connect pin 5 to a 24V ground.
14

LEGEND-MC User’s Manual
External Encoder Specifications

Standard voltage levels are TTL (0V to 5V), however, voltage levels up to 12V are acceptable. If using differential
12V signals, no modification is required. Single ended 12V signals require a bias voltage applied to the compli-
mentary input, i.e.; use two 10k resistors, one connected to +12V and the other connected to the LEGEND signal
ground to hold the /A phase and /B phase at 6VDC. Do not use a 24VDC encoder.

Item Specifications

Input Format Quadrature
Pulse and Direction

Maximum Frequency 12 MHz

Current Draw 940 µAmp

10

11

34

8

9

Legend-MC I/O
Connector CN5

34

Internal Circuitry

A+phase

A-phase

B-phase

B+phase

External Encoder

+5V or +12V

0V

Shield

Frame
Ground

Digital
Ground

Digital
Ground

2
.
4
k

2
.
4
k

4
.
7
k

6
.
8
k

4
.
7
k

6
.
8
k

VCC

3486

3486

Field Wiring
15

LEGEND-MC User’s Manual
Dedicated Inputs
Item Specifications

Number of Input Points Forward limit, Reverse limit, Home, Abort, Reset

Input Format Sinking

Isolation Optical

Voltage 24 VDC ± 20%

Current Rating (ON) 5.3 mA to activate

Input Impedance 2.2k Ω

Operation Voltage Logic 0 <5V
Logic 1 >15V

OFF Current 0.9 mA or less

Limit Switch Response Time OFF to ON: <0.5 ms
ON to OFF: <1.5 ms

47

Legend-MC I/O
Connector CN5

49

15

13

14

12

16

Internal Circuitry

2.2k

Forward Limit Switch

Reverse Limit Switch

Home Input

Abort Input

Reset Input

24VDC

E
x
t
e
r
n
a
l

I
n
p
u
t

S
i
g
n
a
l

Field Wiring
16

LEGEND-MC User’s Manual
Physical Specifications

Hardware Specifications

Description Specifications

Depth: 130mm (5.12 in)

Width: 20 mm (.79 in)

Height: 142 mm (5.6 in)

Weight: .18 kg (.4 lb.)

Vibration: 9.8 msec2 (1.0g)

Ambient temperature: 0 ~ 70° C (32 ~ 158° F)

Humidity: Less than 95%

Noise: IEC Level 3

Description Specifications

CPU: 25 mHz Motorola

Servo update: 1000 µs default, 250 µs minimum

Digital inputs: (8), +24VDC

Dedicated inputs: (5), +24VDC

Digital Outputs: (4), +24VDC

Analog inputs: (2) +/- 10 V 12 bit resolution

 Analog outputs: (1) +/- 10 V 16 bit resolution

Serial port: (1) 9600 or 19200 baud

Ethernet: (1) 10-base-T

NOTE: Inputs float high unless the input is held low.
17

LEGEND-MC User’s Manual
Cable Diagram and Dimensional Drawings
I/O Cable with Terminal Block JUSP-TA50P

49
50

Connector Terminal Block Converter Unit
JUSP-TA50P* (cable included)

Length of cable supplied: 19.69 (500) -0%
+10%

CN5

50-pin connector plug
MR-50RMD2

50-pin terminal block
M3.5 screws

1.
77

 (4
5)

9.74 (247.5)

1.
16

(2
9.

5)

Mounting Hole Diagram

10.28 (261.2)
0.27 (7.0) 0.27 (7.0)

0.14 (3.5)0.14 (3.5)
1.

77
 (4

5)

10.01 (254.2)

0.
61

 (1
5.

5)

1
2

 *Terminal specifications: see I/O connections, page 8
18

LEGEND-MC User’s Manual
A
P

P
R

O
X.

 M
A

S
S:

 0
.1

8k
g

142
20

13
0

20

R
ES

E
T

C 6N C 5N C 4NR TS GF

M
O

D
E

L
N

P

(0
.7

9)

S
ER

IA
L

P
O

R
T

I/O

E
TH

E
R

N
E

T

N
D

 M
O

U
N

TI
N

G
C

LI
P

S
TA

TU
S

 L
ED

'S

E
TH

E
R

N
E

T
LE

D
'S

G
R

O
U

N
D

LE
G

E
N

D
 M

O
U

N
TI

N
G

C
LI

P

C
LI

P
 A

TT
A

C
H

M
E

N
T

TO
 L

EG
EN

D
 A

M

M
O

U
N

TI
N

G
 C

LI
P

S

S
ID

E
 P

IN
 C

O
N

N
E

C
TO

R

(5.59)

(5
.1

2)

(O.79) D
IM

EN
SI

O
N

S:
 M

M
 (I

N
)

19

LEGEND-MC User’s Manual
NOTES:
20

LEGEND-MC User’s Manual
2 Theory of Operation
Overview

The following discussion covers the operation of motion control systems. A typical motion control
system consists of the elements shown in the following illustration:

Elements of Servo Systems

The operation of such a system can be divided into three levels, as shown in the following illustration
Levels of Control Functions. The levels are:

1. Closing the Loop

2. Motion Profiling

3. Motion Programming

The first level, the closing of the loop, assures that the motor follows the commanded position. Closing
the position loop using a sensor does this. The operation at the basic level of closing the loop involves the
subjects of modeling, analysis, and design. These subjects will be covered in the following discussions.

The motion profiling is the generation of the desired position function. This function, R(t), describes
where the motor should be at every sampling period. Note that the profiling and the closing of the loop
are independent functions. The profiling function determines where the motor should be and the closing
of the loop forces the motor to follow the commanded position

The highest level of control is the motion program. This can be stored in the host computer or in the
controller. This program describes the tasks in terms of the motors that need to be controlled, the
distances and the speed.

COMPUTER CONTROLLER DRIVER

MOTORENCODER
21

LEGEND-MC User’s Manual
Level

Levels of Control Functions

The three levels of control may be viewed as different levels of management. The top manager, the motion
program, may specify the following instruction, for example.

This program corresponds to the velocity profiles shown in the following illustration - Velocity and Position
Profiles. Note that the profiled positions show where the motors must be at any instant of time.

Finally, it remains up to the servo system to verify that the motor follows the profiled position by closing
the servo loop.

The operation of the servo system is done in two manners. First, it is explained qualitatively, in the
following section. Later, the explanation is repeated using analytical tools for those who are more
theoretically inclined.

PR 6000,4000

SP 20000,20000

AC 200000,300000

BG X

AD 2000

BG Y

EN

MOTION
PROGRAMMING

MOTION
PROFILING

CLOSED-LOOP
CONTROL

LEVEL

3

2

1

22

LEGEND-MC User’s Manual
Velocity and Position Profiles

Y POSITION

X POSITION

Y VELOCITY

X VELOCITY

TIME
23

LEGEND-MC User’s Manual
Operation of Closed-Loop Systems
To understand the operation of a servo system, we may compare it to a familiar closed-loop operation,
adjusting the water temperature in the shower. One control objective is to keep the temperature at a
comfortable level, say 90 degrees F. To achieve that, our skin serves as a temperature sensor and reports to
the brain (controller). The brain compares the actual temperature, which is called the feedback signal, with
the desired level of 90 degrees F. The difference between the two levels is called the error signal. If the
feedback temperature is too low, the error is positive, and it triggers an action which raises the water
temperature until the temperature error is reduced sufficiently.

The closing of the servo loop is very similar. Suppose that we want the motor position to be at 90 degrees.
A position sensor, often an encoder, measures the motor position and the position feedback is sent to the
controller. Like the brain, the controller determines the position error, which is the difference between the
commanded position of 90 degrees and the position feedback. The controller then outputs a signal that is
proportional to the position error. This signal produces a proportional current in the motor, which causes a
motion until the error is reduced. Once the error becomes small, the resulting current will be too small to
overcome the friction, causing the motor to stop.

The analogy between adjusting the water temperature and closing the position loop carries further. We
have all learned that the hot water faucet should be turned at the "right" rate. If you turn it too slowly, the
temperature response will be slow, causing discomfort. Such a slow reaction is called overdamped
response.

The results may be worse if we turn the faucet too fast. The overreaction results in temperature
oscillations. When the response of the system oscillates, we say that the system is unstable. Clearly,
unstable responses are bad when we want a constant level.

What causes the oscillations? The basic cause for the instability is a combination of delayed reaction and
high gain. In the case of the temperature control, the delay is due to the water flowing in the pipes. When
the human reaction is too strong, the response becomes unstable.

Servo systems also become unstable if their gain is too high. The delay in servo systems is between the
application of the current and its effect on the position. Note that the current must be applied long enough
to cause a significant effect on the velocity, and the velocity change must last long enough to cause a
position change. This delay, when coupled with high gain, causes instability.

This motion controller includes a special filter that is designed to help the stability and accuracy.
Typically, such a filter produces, in addition to the proportional gain, damping and integrator. The
combination of the three functions is referred to as a PID filter.

The filter parameters are represented by the three constants KP, KI and KD, which correspond to the
proportional, integral and derivative term respectively.

The damping element of the filter acts as a predictor, thereby reducing the delay associated with the motor
response.

The integrator function, represented by the parameter KI, improves the system accuracy. With the KI
parameter, the motor does not stop until it reaches the desired position exactly, regardless of the level of
friction or opposing torque.

The integrator also reduces the system stability. Therefore, it can be used only when the loop is stable and
has a high gain.

The output of the filter is applied to a digital-to-analog converter (DAC). The resulting output signal in the
range between +10 and -10 Volts is then applied to the amplifier and the motor.

The motor position, whether rotary or linear is measured by a sensor. The resulting signal, called position
feedback, is returned to the controller for closing the loop.

The following section describes the operation in a detailed mathematical form, including modeling,
analysis and design.
24

LEGEND-MC User’s Manual
System Modeling
Basic Block Diagram

The elements of a servo system include the motor, driver, encoder and the controller. These elements are
shown in the following illustration. The mathematical model of the various components is given below:

Controller

Functional Elements of a Motion Control System

Motor-Amplifier
The motor amplifier is configured for current mode:

Current Drive
The current drive generates a current I, which is proportional to the input voltage, V, with a gain of Ka, a
torque constant of Kt, and inertia J. The resulting transfer function in this case is:

P/V = Ka Kt / Js2

Motion
Generator

[PA][PR][SP][AC]
[DC][JG][IP]

Scurve
Smoothing

[IT]

Velocity
Feed Forward

[FV]

Acceleration
Feed Forward

[FA]

Proportional
Gain
[KP]

Derivative
Gain
[KD]

Integral
Gain
[KI]

Integrator
Limit
[IL]

Notch Filter
[NF] [NB] [NZ]

Torque Limit
[TL]

Offset
[OF]

Speed

Acceleration

+
+

+

+ +
+

+

Encoder
Feedback

-

+
+

D/A
To Legend Amp

DIGITAL
FILTERΣ ZOH DAC

ENCODER

AMP MOTOR

CONTROLLER

R

C

X Y V E

P

25

LEGEND-MC User’s Manual
For example, a current amplifier with Ka = 2 A/V with the motor described by the previous example will
have the transfer function:

P/V = 1000/s2 [rad/V]

Encoder
The encoder generates N pulses per revolution. It outputs two signals, Channel A and B, which are in
quadrature. Due to the quadrature relationship between the encoder channels, the position resolution is
increased to 4N quadrature counts/rev.

The model of the encoder can be represented by a gain of:

Kf = 4N/2π [count/rad]

For example, a 1000 lines/rev encoder is modeled as:

Kf = 638

DAC
The DAC or D-to-A converter converts a 16-bit number to an analog voltage. The input range of the
numbers is 65536 and the output voltage range is +/-10V or 20V. Therefore, the effective gain of the DAC
is:

K= 20/65536 = 305 µVolt/count

Digital Filter
The digital filter has a transfer function of D(z) = K(z-A)/z + Cz/z-1 and a sampling time of T.

The filter parameters, K, A and C are selected by the instructions KP, KD, KI or by GN, ZR and KI,
respectively. The relationship between the filter coefficients and the instructions are:

K = KP + KD or K = GN

A = KD/(KP + KD) or A = ZR

C = KI/8

Ka
Kt
JS

1
S

V I W P

CURRENT SOURCE

1
S

V W P

VELOCITY LOOP

1
Kg(ST1+1)
26

LEGEND-MC User’s Manual
This filter includes a lead compensation and an integrator. It is equivalent to a continuous PID filter with
a transfer function G(s).

G(s) = P + sD + I/s

P = K(1-A) = KP

D = T* K * A = T.KD

I = C/T = KI/8 * TM

For example, if the filter parameters are KP = 4:

KD = 36

KI = 2

T = 0.001 s

the digital filter coefficients are:

K = 40

A = 0.9

C = 0.25

and the equivalent continuous filter, G(s), is:

G(s) = 4 + 0.036s + 250/s

ZOH
The ZOH, or zero-order-hold, represents the effect of the sampling process, where the motor command is
updated once per sampling period. The effect of the ZOH can be modeled by the transfer function

H(s) = 1/(1+sT/2)

If the sampling period is T = 0.001, for example, H(s) becomes:

H(s) = 2000/(s+2000)

However, in most applications, H(s) may be approximated as one.

This completes the modeling of the system elements. Next, we discuss the system analysis.

System Analysis
To analyze the system, we start with a block diagram model of the system elements. The analysis
procedure is illustrated in terms of the following example.

Consider a position control system with the LEGEND-MC controller and the following parameters:

Kt = 0.1 Nm/A Torque constant

J = 2.10-4 kg.m2 System moment of inertia

R = 2 W Motor resistance

Ka = 4 Amp/Volt Current amplifier gain

KP = 12.5 Digital filter gain

KD = 245 Digital filter zero

KI = 0 No integrator
27

LEGEND-MC User’s Manual
The transfer function of the system elements are:

Motor:

M(s) = P/I = Kt/Js2 = 500/s2 [rad/A]

Amp:

Ka = 4 [Amp/V]

DAC:

Kd = 0.0012 [V/count]

Encoder:

Kf = 4N/2π = 318 [count/rad]

ZOH:

2000/(s+2000)

Digital Filter:

KP = 12.5, KD = 245, T = 0.001

Therefore,:

D(z) = 12.5 + 245 (1-z-1)

Accordingly, the coefficients of the continuous filter are:

P = 12.5

D = 0.245

The filter equation may be written in the continuous equivalent form:

G(s) = 12.5 + 0.245s = 0.245(s+51)

The system elements are shown in the following illustration:

Mathematical model of the control system

The open loop transfer function, A(s), is the product of all the elements in the loop:

A = 390,000 (s+51)/[s2(s+2000)]

N = 500 Counts/rev Encoder line density

T = 1 ms Sample period

Σ 0.245(S+51)

318

ENCODER

500
S2

FILTER

2000
S+2000

0.0012 4

ZOH DAC AMP MOTOR
28

LEGEND-MC User’s Manual
To analyze the system stability, determine the crossover frequency, ωc at which A(j ωc) equals one. This
can be done by the Bode plot of A(j ωc), as shown in the following illustration:

Bode plot of the open loop transfer function

For the given example, the crossover frequency was computed numerically resulting in 200 rad/s.

Next, we determine the phase of A(s) at the crossover frequency:

A(j200) = 390,000 (j200+51)/[(j200)2 . (j200 + 2000)]

α = Arg[A(j200)] = tan-1(200/51)-180° -tan-1(200/2000)

α = 76° - 180° - 6° = -110°

Finally, the phase margin, PM, equals:

PM = 180° + α = 70°

As long as PM is positive, the system is stable. However, for a well damped system, PM should be
between 30 degrees and 45 degrees. The phase margin of 70 degrees given above indicated overdamped
response.

Next, we discuss the design of control systems.

1

4

0.1

50 200 2000 W (rad/s)

Magnitude
29

LEGEND-MC User’s Manual
System Design and Compensation
The closed-loop control system can be stabilized by a digital filter, which is pre-programmed in the
LEGEND-MC controller. The filter parameters can be selected by the user for the best compensation. The
following discussion presents an analytical design method.

The Analytical Method
The analytical design method is aimed at closing the loop at a crossover frequency, ωc, with a phase
margin PM. The system parameters are assumed known. The design procedure is illustrated by a design
example.

Consider a system with the following parameters:

The DAC of the LEGEND-MC outputs +/-10V for a 14-bit command of +/-8192 counts.

The design objective is to select the filter parameters in order to close a position loop with a crossover
frequency of ωc = 500 rad/s and a phase margin of 45 degrees.

The first step is to develop a mathematical model of the system, as discussed in the previous system.

Motor:

M(s) = P/I = Kt/Js2 = 1000/s2

Amp:

Ka = 2 [Amp/V]

DAC

Kd = 10/8192:

Encoder:

Kf = 4N/2π = 636

ZOH:

H(s) = 2000/(s+2000)

Compensation Filter:

G(s) = P + sD

The next step is to combine all the system elements, with the exception of G(s), into one function, L(s):

SL(s) = M(s) Ka Kd Kf H(s) = 1.27*107/[s2(s+2000)]

Then the open loop transfer function, A(s), is:

A(s) = L(s) G(s)

Kt Nm/A Torque constant

J = 2 * 10-4 kg.m2 System moment of inertia

R = 2 W Motor resistance

Ka = 2 Amp/Volt Current amplifier gain

N = 1000 Counts/rev Encoder line density
30

LEGEND-MC User’s Manual
Now, determine the magnitude and phase of L(s) at the frequency ωc = 500:

L(j500) = 1.27*107/[(j500)2 (j500+2000)]

This function has a magnitude of:

|L(j500)| = 0.025

and a phase:

Arg[L(j500)] = -180° - tan-1(500/2000) = -194°

G(s) is selected so that A(s) has a crossover frequency of 500 rad/s and a phase margin of 45 degrees.
This requires that:

|A(j500)| = 1

Arg [A(j500)] = -135°

However, since:

A(s) = L(s) G(s)

then it follows that G(s) must have magnitude of:

|G(j500)| = |A(j500)/L(j500)| = 40

and a phase:

arg [G(j500)] = arg [A(j500)] - arg [L(j500)] = -135° + 194° = 59°

In other words, we need to select a filter function G(s) of the form:

G(s) = P + sD

so that at the frequency ωc =500, the function would have a magnitude of 40 and a phase lead of 59
degrees.

These requirements may be expressed as:

|G(j500)| = |P + (j500D)| = 40

and:

arg [G(j500)] = tan-1[500D/P] = 59°

The solution of these equations leads to:

P = 40cos 59° = 20.6

500D = 40sin 59° = 34.3

Therefore:

D = 0.0686

and:

G = 20.6 + 0.0686s

The function G is equivalent to a digital filter of the form:

D(z) = KP + KD(1-z-1)

where:

KP = P

and:

KD = D/T
31

LEGEND-MC User’s Manual
Assuming a sampling period of T=1ms, the parameters of the digital filter are:

KPX = 20.6

KDX = 68.6

The LEGEND-MC can be programmed with the instruction:

KP 20.6

KD 68.6

In a similar manner, other filters can be programmed. The procedure is simplified by the following table,
which summarizes the relationship between the various filters.

Notch Filter

There are some applications in which the standard tuning procedure using the PID filter of the controller
cannot completely eliminate the resonance in a system. Resonance occurs when the natural frequency of a
system is excited in a way that increases the amplitude of oscillation. This is usually due to system
compliance, such as a mechanical coupling or inherent motor characteristics.

The notch filter is an advanced tuning technique that acts much like a “band-reject” filter in an electronic
circuit. Certain frequencies are rejected while others are allowed to pass through. This is particularly
helpful when trying to eliminate a resonance that always occurs at a single frequency.

If a system oscillates at a specific point, then the first thing to do is find out at what frequency it occurs.
The easiest way to do this is to graph the Actual Motor Position versus Time while the motor is oscillating.
A sine wave with a constant frequency of oscillation should be seen. To get the frequency, f (Hertz), count
the number of peaks that occur in 1 second. Or alternatively, measure the distance between two peaks,
called the Period T (seconds), and then use the equation: f = 1/T.

Digital D(z) = K(z-A/z) + Cz/z-1

Digital D(z) = KP + KD(1-z-1) + KI/8(1-z-1)

KP, KD, KI K = KP + KD
A = KD/(KP+KD)
C = KI/8

Digital D(z) = GN(z-ZR)/z + KI z/8(z-1)

GN, ZR, KI K = GN
A = ZR
C = KI/8

Continuous G(s) = P + Ds + I/s

PID, T P = K(1-A) = KP
D = K *A * T = T * KD
I = C/T = KI / 8 * TM

Mathematical model of the motor and amplifier in two operational modes
32

LEGEND-MC User’s Manual
This will be the center frequency for your notch filter, specified as NF. To get the other two parameters,
it is easiest to look at an example that shows their relationship to the command output. See the graphs
below:
33

LEGEND-MC User’s Manual
34

LEGEND-MC User’s Manual
These graphs show how NF, NB, and NZ determine the characteristics of the filter. In particular, NB
specifies the bandwidth that is rejected (Figure 1). A larger NB causes a larger range of frequencies to be
attenuated. The ratio of NB/NZ controls the amount of attenuation, or depth of the notch (Figure 2). A
larger ratio causes a higher amount of attenuation. However, a ratio equal to one should have very little,
or no effect, on the output (Figure 3). A ratio greater than one will amplify the output signal (Figure 3)
causing a resonance. For consistency, these notch waveforms all have a center frequency of 25Hz, except
for the last one (Figure 4) which has a NF of 35 and is therefore shifted to the right.

A simple method for attaining your NF,NB, and NZ parameters is the following:
•Estimate resonance frequency.
•Set NF to resonance frequency in Hz.
•Set NB = 1/2 NF.
•Set NZ between zero and 5.

Although the theory behind a notch filter is beyond the scope of this application note, a general overview
may clarify how the notch works. As shown, the notch filter compensates for a resonance in the system.
One method of illustrating this is by looking at the poles and zeroes of the transfer function plotted on the
s-plane.
35

LEGEND-MC User’s Manual
Resonance shows up as a pair of complex poles with a real part. A notch filter attempts to cancel the
unwanted poles by placing zeroes on top of them and placing new poles in a more desirable location. The
following diagram shows the pole-zero configuration of a general system with resonance and a notch
filter:

A notch filter can be extremely helpful when used properly, however it is not right for every system.
Incorrect placement of the Notch can cause system instability, and a notch filter puts extra overhead on the
CPU of the controller. A general rule of thumb is to only use a notch when resonance has been found that
cannot be eliminated with the controller’s standard PID filter of the controller. Also, the notch filter is
only effective with a single resonant frequency.
36

LEGEND-MC User’s Manual
3 Communications
Introduction

The LEGEND-MC has one RS232 port and one Ethernet port. The RS-232 is a standard serial link with
communication baud rates up to 19.2kbaud. The Ethernet port is a 10Base-T link.

Controller Response to Data
Most LEGEND-MC instructions are represented by two characters followed by the appropriate
parameters. Each instruction must be terminated by a carriage return or semicolon.

Instructions are sent in ASCII, and the LEGEND-MC decodes each ASCII character (one byte) one at a
time. It takes approximately .5 msec for the controller to decode each command.

After the instruction is decoded, the LEGEND-MC returns a colon (:) if the instruction was valid or a
question mark (?) if the instruction was not valid or was not recognized.

For instructions requiring data, such at Tell Position (TP), the LEGEND-MC will return the data
followed by a carriage return, line feed and : .

It is good practice to check for : after each command is sent to prevent errors. An echo function is
provided to enable associating the LEGEND-MC response with the data sent. The echo is enabled by
sending the command EO 1 to the controller.

RS232 Port
The LEGEND-MC has a single RS232 connection for sending and receiving commands from a PC or
other terminal. The pin connections for the RS232 connection are as follows.

Port 1 DATATERM

1 RTS – input 6 RTS – input

2 Transmit Data - output 7 CTS – output

3 Receive Data - input 8 RTS – input

4 CTS – output 9 No connection (Can connect to +5V, 30mA) *

5 Ground
37

LEGEND-MC User’s Manual
Configuration
Although Yaskawa’s YTerm software automatically configures the port you may need to manually
configure the PC’s serial port if using third party software.

Configure your PC for 8-bit data, one start-bit, one stop-bit, full duplex and no parity. The baud rate for
the RS232 communication can be chosen by selecting the proper jumper configuration on the LEGEND-
MC according to the table below.

Handshaking Modes
The RS232 port is configured for hardware handshaking. In this mode, the RTS and CTS lines are used.
The CTS line will go high whenever the LEGEND-MC is not ready to receive additional characters. The
RTS line will inhibit the LEGEND-MC from sending additional characters.

NOTE: The RTS line goes high for inhibit. This handshake procedure ensures proper communication espe-
cially at higher baud rates.

If a device that is used in conjunction with the LEGEND-MC does not support hardware handshaking,
solder a jumper across the CTS and RTS lines in the cable. Remember that doing so may degrade
communication reliability. Software handshake is not supported.

SMC Protocol Guidelines
The following items outline details of the simple ASCII communication protocol which the LEGEND-
MC implements. NOTE: throughout this section, strings are enclosed in single quotes, and characters are
enclosed in greater than / less than signs < >.

1) Recommended method of querying variables: example `MG VAR<cr>' where MG is the message
command and VAR is a variable defined in the controller.

2) Recommended methods of querying commands: example `MG _TPX<cr>' or `TPX <cr>' where MG
is the controller's message command and TP is the command to return the current position. For other
details, see the command section of an SMC manual. It describes the possible methods of obtaining
data when multiple axes are involved.

3) Recommended method of setting a variable value: example `VAR=105<cr>'

4) Recommended method of setting a command parameter: `PRX=12345<cr>' where PR is the Position
Relative command, "X" is the X axis, and the value assigned after the equal sign is the relative move
distance specified for the X axis. For other details, see the command section of an SMC manual. It
describes the possible methods of obtaining data when multiple axes are involved. Multiple axes can
be set at once. Example `PR 12345,6789<cr>' where PR is the Position Relative command, the first
value is assigned to the X axis and the second value is assigned to the Y axis. If an axis does not need
to be set, it can be omitted as follows: `PR ,,54321<cr>' which will set only the third (Z) axis.

5) Hardware Handshaking is always recommended when communicating with the SMC family of con-

JP1-LOCATION “96” (JUMPER ATTACHED) 9600

JP1-LOCATION “96” (JUMPER UNATTACHED) 19200 (default)
38

LEGEND-MC User’s Manual
trollers. It is the primary method used by the controller to synchronize communication with external
devices. The controllers do not support software handshaking, and simply using three-wire commu-
nication will result in possible character loss.

6) When sending a command string of any kind to the controller, verify that the echo is active (EO1)
and matches the outgoing string before sending the carriage return. Compare the echo, then either
send the carriage return <cr> (if good) or send the backslash character <\> to flush the buffer in the
controller (if bad) then resend. Depending on the environment, retry the same string up to 3-5 times
before finally determining that there is a serious communication failure.

7) When a message retry is required, send the backslash <\> character to flush the buffer in the SMC so
the next command string can be correctly understood. If the buffer contains a partial message, an
additional message could look like a bad message to the SMC, causing another '?<cr><lf>' .

8) Do not use `VAR=<cr>' to request the SMC to return a variable value. If there was an error in trans-
mission, and the string that the SMC received was not a variable that already exists in the controller,
it creates a new variable. If this happens enough times, the controller will fill its variable space. We
recommend using `MG VAR<cr>' which is more reliable, meaning if a bad transmission occurs, the
SMC will respond with a '?<cr><lf>', and not create an unwanted variable. NOTE: Use the 'LV<cr>'
(List Variables) command to see if there are any erroneous variables in the controller.

9) Use the 'TC<cr>' command to get the error code if a question mark ever appears in a response string.

10) Use of 'MG_TC<cr>' (Tell Code) and 'MG_ED<cr>' (The last line that had an error), which are set
when the #CMDERR routine executes.

Ethernet Configuration
Communication Protocols

The Ethernet is a local area network through which information is transferred in units known as packets.
Communication protocols are necessary to dictate how these packets are sent and received. The
LEGEND-MC supports two industry standard protocols, TCP/IP and UDP/IP. The controller will
automatically respond in the format in which it is contacted.

TCP/IP is a "connection" protocol. The master must be connected to the slave in order to begin
communicating. Each packet sent is acknowledged when received. If no acknowledgement is received,
the information is assumed lost and is resent.

Unlike TCP/IP, UDP/IP does not require a connection. This protocol is similar to communicating via
RS232. If information is lost, the controller does not return a colon or question mark. Because the
protocol does not provide for lost information, the sender must re-send the packet.

Although UDP/IP is more efficient and simple, Yaskawa recommends using the TCP/IP protocol. TCP/
IP insures that if a packet is lost or destroyed while in transit, it will be resent.

Ethernet communication transfers information in ‘packets’. The packets must be limited to 470 data bytes
or less. Larger packets could cause the controller to lose communication.

NOTE: To avoid losing information in transit, Yaskawa recommends that the user wait for an acknowl-
edgement of receipt of a packet before sending the next packet.

NOTE: A command sent over an Ethernet Telnet session must reside in one packet. This means that a Tel-
net emulator must not send a command such as MG_TPX<CR> until the carriage return is present; i.e., do
not send one character at a time as the user enters them.
39

LEGEND-MC User’s Manual
Addressing
There are three levels of addresses defining Ethernet devices. The first is the Ethernet or hardware
address- a unique and permanent 6 byte number, or MAC address. No other device has the same Ethernet
address. The LEGEND-MC Ethernet address is set by the factory and the last two bytes of the address are
the serial number of the controller.

The second level of addressing is the IP address. This is a 32-bit (or 4 byte) number. The IP address is
constrained by each local network and must be assigned locally. Assigning an IP address to the controller
can be done in a number of ways.

The first method is to use the BOOT-P utility via the Ethernet connection (the LEGEND-MC must be
connected to the network and powered). For an explanation of BOOT-P see Third Party Software.

The second method for setting an IP address is to send the IA command through the LEGEND-MC main
RS-232 port. The IP address you want to assign may be entered as a 4 byte number delimited by commas
(industry standard uses periods) or a signed 32 bit number. (Ex. IA 124,51,29,31 or IA 2083724575) Type
in BN to save the IP address to the controller's non-volatile memory.

NOTE: Yaskawa recommends that the IP address selected is not one that can be accessed across the Gate-
way. The Gateway is an application that controls communication between an internal network and the out-
side world.

The third level of Ethernet addressing is the UDP or TCP port number. The Yaskawa controller does not
require a specific port number. The port number is established by the master each time it connects to the
controller.

Ethernet Handles
An Ethernet handle is a communication resource within a device. The LEGEND-MC can have a
maximum of 16 Ethernet handles open at any time. When using TCP/IP, each connection to a device; i.e.,
the host computer, requires an individual Ethernet handle. In UDP/IP, one handle may be used for all the
masters, but each slave uses one. Pings and ARPS do not occupy handles. If all 8 handles are in use and a
9th master tries to connect, it will be sent a “reset packet” that generates the appropriate error in its native
application.

CAUTION: Be sure there is only one BOOT-P server running. If your network has DHCP or
BOOT-P running, it may automatically assign an IP address to the controller upon linking it to
the network. To ensure that the IP address is correct, please contact your system
administrator before connecting the controller to the Ethernet network.

PIC REQUIRED
40

LEGEND-MC User’s Manual
Global vs. Local Operation
Each LEGEND-MC controls one axis of motion, referred to as A or X. The host computer can
communicate directly with any LEGEND-MC via an Ethernet or RS-232 connection. When the host
computer is directly communicating with any LEGEND-MC, all commands refer to the first axis as A or
X. Direct communication with the LEGEND-MC is known as “local operation”. The concept of Local
and Global Operation also applies to application programming.

The LEGEND-MC supports Yaskawa’s control system. This allows up to four LEGEND-MC controllers
to be connected together as a single virtual axis controller. In this system, one of the controllers is
designated as the master. The master can receive commands from the host computer that apply to all of
the axes in the system.

Here is a simple way to view Local and Global Operation; when the host communicates with a slave
controller, it considers the slave as a 1 axis controller. When the host communicates with a master, it
considers the master as a multi-axis controller. Similarly, an application program residing in a slave
controller deals only with 1 motor as A or X. An application program in a master deals with all motors
referenced A through H.

The controllers may operate under both Local and Global Mode. In general, operating in Global Mode
simplifies controlling the entire system. However, Local Mode operation is necessary in some situations;
using Local Mode for setup and testing is useful since this isolates the controller. Specific modes of
motion require operation in Local Mode. Also, each controller can have a program including the slave
controllers. When a slave controller has a program, this program would always operate in Local Mode.

LEGEND-MC
LEGEND-MC

X Axis
LEGEND-MC

X Axis

LEGEND-MC
X Axis

Host Computer

Local Operation

X Axis

Ethernet or RS 232

LEGEND-MC
Y Axis LEGEND-MC

Z Axis

LEGEND-MC
X Axis

LEGEND-MC
W Axis

Host Computer

Global Operation

Ethernet
41

LEGEND-MC User’s Manual
Configuring Operation for Distributed Control (Obsolete Method < 1.0c firmware)
Each LEGEND-MC must be assigned an IP address. This can be done with the BOOT-P procedure or the
IA command can be used to assign the IP address through the serial port. Once the IP address has been
assigned, a BN command should be issued to save this value in the controller’s non-volatile memory.

Upon power-up or reset, the master LEGEND-MC will establish each slave connection. The following
steps must be taken while connected to the master LEGEND-MC:

1. Using the IH command, open two handles for each slave. Each slave controller must have 2
open handles, one for commands from the master, the other for data returned from the slave. The
second internet handle for each slave controller must contain a specific port value. The value must
be an even number greater than 502. The command for opening the communication handle is:

IHh=ip0,ip1,ip2,ip3<p>2 h is the handle. ip is the slave IP address. <p specifies port number. >2
specifies TCP/IP.

2. Set the total number of axes in the system with the NA command. For example, assume there are
two LEGEND-MC slaves, therefore there will be three axes and the command would be NA3.

3. Connect each slave handle to the master. This is accomplished with the CH command. The
format of this command is:

CHa=h1,h2 where a is the first axis designator of the slave controller, h1 is the handle for
commands and h2 is the handle for slave status.

4. For the master controller to make decisions based on the status of the slave controllers, it is
necessary for the slaves to generate data records giving their current status. The record is sent at a
rate set by the QW command. The QW command must be executed by the master before the slave
can issue a record under any method. The format of the command is:

QWh=n where h is the handle. n is a number between 4 and 16000.

n sets the number of samples (msec with default TM1000).

n equal to 0 disables the mode.

The data contained in the record is as follows:

• (RP) reference position

• (TP) encoder position

• (TE) position error

• (TV) velocity

• (TT) torque

• (TS) limit and home switches

• (TS) axis status (in motion, motor of, at speed, stopcode)

• (TI) uncommitted inputs

• (OP) uncommitted outputs

Operation of Distributed Control
For most commands it is unnecessary to be conscious of whether an axis is local or remote. For example,
to set the KP value for the X and Z axes, the command for the master would be:

KP 10,,20

Similarly, the interrogation commands can also be issued. For example, the position error for all axes
42

LEGEND-MC User’s Manual
would be TE. The position operand for the F axis would be _TPF.

Some commands are inherently sent to all controllers. These include commands such as AB (Abort), CN
and TM.

Certain commands need to be launched specifically. For this purpose there is the SA command. In its
simplest form the SA command is:

SAh=”command string”

Here “command string” will be sent to handle h. For example, the SA command is the means for sending
an XQ command to a slave. A more flexible form of the command is:

SAh=field1,field2,field3,field4...field8 Where each field can be a string in quotes or a variable.

When the master sends an SA command to a slave, it is possible for the master to determine the status of
the command. The response _IHh4 will return the number 1 to 4. One means waiting for the
acknowledgement from the slave. Two means a colon (command accepted) has been received. Three
means a question mark (command rejected) has been received. Four means the command timed out.

If a command generates responses (such as the TE command), the values will be stored in _SAh0 through
_SAh7. If a field is unused its _SA value will be -2^31.

Accessing the I/O of the slaves
The I/O of the slaves are settable and readable from the master. The bit numbers are adjusted by the
handle number of the data record. Each handle adds 100 to the bit number. Handle A is 100 and Handle F
is 600.

Example
Bit 2 on the slave using handle E for the data record would be 502. The arguments for SB, CB, and OB
use this format as does the @IN[] function.

For byte and word-wide I/O, use the SA command such as: SAC=”OP6” to set the output port of handle
C. SAC=”TI” will return the input port on handle C and the operand, _SAC0 will contain the response
from the TI command.

Handling Communication Errors
If a controller has an application program running and the TCP communication is lost, the #TCPERR
routine will automatically execute. See the Special Label Example program in the Example Applications

Modbus Support
The Modbus protocol supports communication between masters and slaves. The masters may be multiple
PC’s that send commands to the controller. The slaves are typically peripheral I/O devices that receive
commands from the controller.

NOTE: There are numerous ways to reset the controller; hardware reset (push reset button or power-down
controller) and software resets (through Ethernet or RS232 by entering RS). The only reset that will not
cause the controller to disconnect is a software reset via the Ethernet or RS232.

When the Yaskawa controller acts as the master, the IH command is used to assign handles and connect
to its slaves. The IP address may be entered as a 4 byte number separated with commas (industry standard
uses periods) or as a 32 bit number. A port may also be specified, but if not, it will default to 502. The
43

LEGEND-MC User’s Manual
protocol (TCP/IP or UDP/IP) to use must also be designated at this time, otherwise, the controller will not
connect to the slave. (Ex. IHB=151,25,255,9<179>2 This will open handle #2 and connect to the I/P
address 151.25.255.9, port 179, using TCP/IP).

An additional protocol layer is available for speaking to I/O devices. Modbus is an RS-485 protocol that
packages information in binary packets that are sent as part of a TCP/IP packet. In this protocol, each
slave has a 1 byte slave address.The LEGEND-MC can use a specific slave address or default to the
handle number.

Modbus protocol has commands called function codes. The LEGEND-MC supports 10 major function
codes:

The LEGEND-MC provides three levels of Modbus communication. The first level allows the user to
create a raw packet and receive raw data. It uses the MBh command with a function code of -1. The
command format is:

MBh=-1,len, array[] where len is the number of bytes

array [] is the array with the data

The second level incorporates the Modbus structure. This is necessary for sending configuration and
special commands to an I/O device. The formats vary depending on the function code that is called. For
more information, refer to Command Reference

The third level of Modbus communication uses standard Yaskawa commands. Once the slave has been
configured, the commands that may be used are @IN[], @AN[], SB, CB, OB, and AO. For example, AO
2020,8.2 would tell I/O number 2020 to output 8.2 volts.

If a specific slave address is not necessary, the I/O number to be used can be calculated with the following:

I/O Number= (HandleNum*1000)+((Module-1)*4)+(BitNum)

Where HandleNum is the handle number from 1 (A) to 16 (P). Module is the position of the module in the
rack from 1 to 16. BitNum is the I/O point in the module from 1 to 4.

If an explicit slave address is to be used, the equation becomes:

I/O Number=(SlaveAddress*1000)+(HandleNum*1000)+((Module-1)*4)+(Bitnum-1)

Which devices receive what information from the controller depends on a number of things. If a device
queries the controller, it will receive the response unless it explicitly tells the controller to send it to
another device. If the command that generates a response is part of a downloaded program, the response
will route to whichever port is specified as the default (unless explicitly told to go to another port). To
designate a specific destination for the information, add {Eh} to the end of the command. (Ex.
MG{EC}"Hello" will send the message "Hello" to handle #3. TP,,?{EF} will send the z axis position to
handle #6.)

Function Code Definition
01 Read Coil Status (Read Bits)

02 Read Input Status (Read Bits)

03 Read Holding Registers (Read Words)

04 Read Input Registers (Read Words)

05 Force Single Coil (Write One Bit)

06 Preset Single Register (Write One Word)

07 Read Exception Status (Read Error Code)

15 Force Multiple Coils (Write Multiple Bits)

16 Preset Multiple Registers (Write Words)

17 Report Slave ID
44

LEGEND-MC User’s Manual
Communicating with Multiple Devices
The LEGEND-MC is capable of supporting multiple masters and slaves. The masters may be multiple
PC's that send commands to the controller. The slaves are typically peripheral I/O devices that receive
commands from the controller.

An Ethernet handle is a communication resource within a device. The LEGEND-MC can have a
maximum of 8 Ethernet handles open at any time. When using TCP/IP, each master or slave uses an
individual Ethernet handle. In UDP/IP, one handle may be used for all the masters, but each slave uses
one. (Pings and ARP's do not occupy handles.) If all 16 handles are in use and a 17th master tries to
connect, it will be sent a "reset packet" that generates the appropriate error in its native application.

Multicasting
A multicast is only used in UDP/IP and is similar to a broadcast (everyone on the network gets the
information) but specific to a group. As such, all devices within a specified group will receive
information sent in a multicast. The many multicast groups on a network are differentiated by their
multicast IP address. To communicate with all devices in a specific multicast group, information can be
sent to the multicast IP address rather than to each device IP address. All LEGEND-MC controllers
belong to a default multicast address of 239.255.19.56. The controller's multicast IP address can be
changed by using the IA> u command.

Using Third Party Software
Yaskawa supports ARP, BOOT-P, and Ping, which are utilities for establishing Ethernet connections.
ARP is an application that determines the MAC address of a device at a specific IP address. BOOT-P is
an application that determines which devices on the network do not have an IP address and assigns the IP
address you have chosen to it. Ping is used to check the communication between the device at a specific
IP address and the host computer.

The LEGEND-MC can communicate with a host computer through any application that can send TCP/IP
or UDP/IP packets. A good example of this is Telnet, a utility that comes with most Windows systems.

NOTE: A command sent over an Ethernet Telnet session must reside in one packet. This means that a
Telnet emulator must not send a command such as MG_TPX<CR> until the carriage return is present; i.e.,
do not send one character at a time as the user enters them.
45

LEGEND-MC User’s Manual
NOTES:
46

LEGEND-MC User’s Manual
4 Command Reference
AB (ABORT)
@ABS (ABSOLUTE VALUE)
AC (ACCELERATION)
@ACOS (ARC COSINE)
AD (AFTER DISTANCE)
AF (ANALOG FEEDBACK)
AI (AFTER INPUT)
AL (ARM LATCH)
AM (AFTER MOTION)
@AN (READ ANALOG)
AO (ANALOG OUTPUT)
AP (AFTER ABSOLUTE POSITION)
AR (AFTER RELATIVE DISTANCE)
AS (AT SPEED)
@ASIN (ARC SINE)
AT (AT TIME)
@ATAN (ARC TANGENT)
BG (BEGIN MOTION)
BL (REVERSE SOFTWARE LIMIT)
BN (BURN)
BP (BURN PROGRAM)
BV (BURN VARIABLES)
CB (CLEAR BIT)
CD (CONTOUR DATA)
CE (CONFIGURE ENCODER)
CF (CONFIGURE MESSAGES)
CH (CONNECT HANDLE)
CI (COMMUNICATION INTERRUPT)
CM (CONTOUR MODE)
CN (CONFIGURE LIMIT SWITCHES)
@COM (2’S COMPLEMENT)
@COS (COSINE)
CS (CLEAR SEQUENCE)
CW (COPYRIGHT INFORMATION / DATA ADJUSTMENT BIT ON/OFF)
DA (DE-ALLOCATE THE VARIABLES & ARRAYS)
DB (DYMANIC BRAKE)
DC (DECELERATION)
DE (DUAL (AUXILIARY) ENCODER POSITION)
DL (DOWNLOAD)
DM (DIMENSION)
DP (DEFINE POSITION)
DT (DELTA TIME)
DV (DUAL VELOCITY (DUAL LOOP))
EA (ECAM MASTER AXIS)
EB (ENABLE ECAM MODE)
47

LEGEND-MC User’s Manual
EC (ECAM COUNTER)
ED (EDIT)
EG (ECAM ENGAGE)
ELSE (ELSE FUNCTION FOR USE WITH IF CONDITIONAL STATEMENT)
EM (ECAM CYCLE)
EN (END)
ENDIF (END OF IF CONDITIONAL STATEMENT)
EO (ECHO)
EP (CAM TABLE INTERVALS AND STARTING POINT)
EQ (ECAM QUIT (DISENGAGE))
ER (ERROR LIMIT)
ET (ELECTRIC CAM TABLE)
FA (ACCELERATION FEED FORWARD)
FE (FIND EDGE)
FI (FIND INDEX)
FL (FORWARD SOFTWARE LIMIT)
@FRAC (FRACTION)
FV (VELOCITY FEED FORWARD)
GA (MASTER AXIS FOR GEARING)
GR (GEAR RATIO)
HC (HANDLE CONNECT)
HM (HOME)
HR (HANDLE RESTORE)
HS (HANDLE SWITCH)
HW (HANDLE WAIT)
HX (HALT EXECUTION)
IA (IP ADDRESS)
IF (IF CONDITIONAL STATEMENT)
IH OPEN INTERNET HANDLE)
II (INPUT INTERRUPT)
IL (INTEGRATOR LIMIT)
IN (INPUT VARIABLE)
@IN (STATUS OF DIGITAL INPUT)
@INT (INTEGER)
IP (INCREMENT POSITION)
IT (INDEPENDENT TIME CONSTANT - SMOOTHING FUNCTION)
JG (JOG)
JP (JUMP TO PROGRAM LOCATION)
JS (JUMP TO SUBROUTINE)
KD (DERIVATIVE CONSTANT)
KI (INTEGRATOR)
KP (PROPORTIONAL CONSTANT)
LA (LIST ARRAYS)
LC (LOCK CONTROLLER)
LE (LINEAR INTERPOLATION END)
LF (FORWARD LIMIT)
LI (LINEAR INTERPOLATION DISTANCE)
48

LEGEND-MC User’s Manual
LL (LIST LABELS)
LM (LINEAR INTERPOLATION MODE)
LO (LOCKOUT)
LR (REVERSE LIMIT)
LS (LIST PROGRAM)
LT (LATCH TARGET)
LV (LIST VARIABLES)
LZ (LEADING ZERO)
MB (MODBUS)
MC (MOTION COMPLETE - “IN POSITION”)
MF (FORWARD MOTION TO POSITION)
MG (MESSAGE)
MM (MASTER MODULUS)
MO (MOTOR OFF)
MR (REVERSE MOTION TO POSITION)
MT (MOTOR TYPE)
MW (MODBUS WAIT)
NA (NUMBER OF AXES)
NB (NOTCH BANDWIDTH)
NF (NOTCH FREQUENCY)
NO (NO OPERATION)
NZ (NOTCH ZERO)
OB (OUTPUT BIT)
OC (OUTPUT COMPARE)
OD (OUTPUT COMPARE - AUXILIARY ENCODER)
OE (OFF ON ERROR)
OF (OFFSET)
OP (OUTPUT PORT)
@OUT (STATUS OF DIGITAL OUTPUT)
PA (POSITION ABSOLUTE)
PF (POSITION FORMAT)
PR (POSITION RELATIVE)
PW (PASSWORD)
QD (DOWNLOAD ARRAY)
QL (REPORT LATCH - AUXILIARY ENCODER)
QR (DATA RECORD)
QU (UPLOAD ARRAY)
QW (SLAVE RECORD UPDATE RATE)
QZ (RETURN DATA RECORD INFORMATION)
RA (RECORD ARRAY)
RC (RECORD)
RD (RECORD DATA)
RE (RETURN FROM ERROR ROUTINE)
RI (RETURN FROM INTERRUPT ROUTINE)
RL (REPORT LATCHED POSITION)
@RND (ROUND)
RS (RESET)
49

LEGEND-MC User’s Manual
<CONTROL>R <CONTROL>S (MASTER RESET)
<CONTROL>R <CONTROL>V (REVISION INFORMATION)
SA (SEND COMMAND)
SB (SET BIT)
SC (STOP CODE)
SH (SERVO HERE)
@SIN (SIN)
SP (SPEED)
@SQR (SQUARE ROOT)
ST (STOP)
TB (TELL STATUS BYTE)
TC (TELL ERROR CODE)
TD (TELL DUAL ENCODER)
TE (TELL ERROR)
TH (TELL HANDLE)
TI (TELL INPUTS)
TIME (TIME OPERAND KEYWORD))
TL (TORQUE LIMIT)
TM (TIME COMMAND)
TP (TELL POSITION)
TR (TRACE)
TS (TELL SWITCHES)
TT (TELL TORQUE)
TV (TELL VELOCITY)
TW (TIMEOUT FOR IN POSITION (MC))
UL (UPLOAD)
VA (VECTOR ACCELERATION)
VD (VECTOR DECELERATION)
VE (VECTOR SEQUENCE END)
VF (VARIABLE FORMAT)
VR (VECTOR SPEED RATIO)
VS (VECTOR SPEED)
VT (VECTOR TIME CONSTANT)
WC (WAIT FOR CONTOUR DATA)
WT (WAIT)
XQ (EXECUTE PROGRAM)
ZS (ZERO SUBROUTINE STACK)
50

LEGEND-MC User’s Manual
Command Description
Each executable instruction is listed in the following section in alphabetical order.

The two letter op-code for each instruction is placed in the upper left corner. Below the op-code is a
description of the command and required arguments. As arguments, some commands require actual
values to be specified following the instruction. These commands are followed by lower case x, y, z, and
w. Values may be specified for any axis separately or any combination of axes. Axis values are separated
by commas. Examples of valid x,y, z, w syntax are listed below. For the SMC-3010, the axis designators
a,b,c,d,e,f,g,h are used where x,y,z,w can be used interchangeably with a,b,c,d.

Where x, y, z and w are replaced by actual values.

A ? returns the specified value for that axis. For example, AC ?,?,?,?, returns the acceleration of the
X,Y,Z and W axes.

Other commands require action on the X,Y,Z or W axis to be specified. These commands are followed by
uppercase X,Y,Z or W. Action for a particular axis or any combination is specified by writing X,Y,Z or
W. No commas are needed. Valid XYZW syntax is listed below. The SMC-3010 uses ABCDEFGH axis
designators where XYZW can be used interchangeably with ABCD.

Valid x,y,z,w syntax Comment

AC x Specify x only

AC x,y Specify x and y only

AC x,,z Specify x and z only

AC x,y,z,w Specify x,y,z,w

AC ,y Specify y only

AC ,y,z Specify y and z

AC ,,z Specify z only

AC ,,,w Specify w only

AC x,,,w Specify x and w only

AC a,,,d,,f Specify a,d and f only

Valid XYZW syntax Comment

SH X Servo Here, X only

SH XYW Servo Here, X,Y and W axes

SH XZW Servo Here, X,Z and W axes

SH XYZW Servo Here, X,Y,Z and W axes

SH Y Servo Here, Y only

SH YZW Servo Here, Y,Z and W axes

SH Z Servo Here, Z only

SH Servo Here, all axes
51

LEGEND-MC User’s Manual
Where X,Y,Z and W specify axes.

The usage “Description:” specifies the restrictions on allowable execution. “While Moving” states
whether or not the command is valid while the controller is performing a previously defined motion. “In a
program” states whether the command may be used as part of a user-defined program. “Command Line”
states whether the command may be used from the serial port.

“Can be Interrogated” states whether or not the command can be interrogated by using ? to return the
specified value. “Used as an Operand” states whether a command can be used to generate a value for
another command or variable (i.e. V=_TTX). “Default Format” defines the format of the value with
number of digits before and after the decimal point. Finally, “Default Value” defines the values the
instruction’s parameters will have after a Master Reset.

The following table defines terms found in the usage chart for each command:

SH W Servo Here, W only

SH ZW Servo Here, Z and W axes

SH ABFG Servo Here, A,B,F,G axes

Classification Meaning
All Axes When this command is executed in the master, it causes

the command to be broadcast to all slaves in the distrib-
uted control system. Example CN, Limit Switch Config-
uration.

No, Local These commands cannot be sent from a master to a slave
over Ethernet or are not involved with an Ethernet fea-
ture in any way.

QW packet The information contained in this command is obtained
from the slave update packet. This packet is updated at
the QW rate. This is also the second parameter of the HC
command.

Specific Axis If Ethernet is configured for Distributed Control, when a
slave axis is specified in a command such as
BLW=-5000, the command is relayed to the slave once,
and the slave acknowledges once.

Use SA This command is possible over Ethernet, but only when
encapsulated inside an SA command to the appropriate
handle. Generally commands that have this listing are
not intended to be used with distributed control, but will
work normally when received by the slave.
52

LEGEND-MC User’s Manual
AB (Abort)
[Motion]

DESCRIPTION:

AB (Abort) stops motion instantly without controlled deceleration by freezing the profiler. If there is a
program executing, AB also aborts the program unless a 1 argument is specified. The command, AB, will
shut off the motors (disable the amplifier) for any axis in which the off-on-error function is enabled (see
command "OE"). AB aborts motion on all axes in motion and cannot stop individual axes. If a multi-axis
system is configured (distributed control) the AB command will abort all axes if issued to the master.

ARGUMENTS: AB n where

n = 0 aborts motion and program

n = 1 aborts motion without aborting program

n = 2 aborts motion on all axes that are connected via ethernet, does not cause error for axes that have lost
connection.

USAGE:

OPERAND USAGE:

_AB returns the state of the Abort Input on the local controller.

RELATED COMMANDS:

EXAMPLES:

NOTE: Use parameter 1 following AB if you want the motion to be aborted or application program will be aborted.

While Moving Yes Default Value n/a

In a Program Yes Default Format n/a

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes Distributed Control Out to all axes

"SH" Turns servos back on if they were shut-off by
Abort and OE1.

OE 0,0,0,0 Disable OFF/ON error for all axes

AB Aborts motion unconditionally, motors remain
enabled

OE 1,1,1,1 Enable off-on-error

AB Shuts off amplifier enable and aborts motion

#A Label - Start of program

JG 20000 Specify jog speed on X-axis

BGX Begin jog on X-axis

WT 5000 Wait 5000 msec

AB1 Abort motion without aborting program

WT 5000 Wait 5000 milliseconds

SH Servo Here

JP #A Jump to Label A

EN End of the routine
53

LEGEND-MC User’s Manual
@ABS (Absolute Value)
[Function]

DESCRIPTION:

@ABS returns the absolute value of a number or variable given in square brackets. Note that the @ABS
command is a function, which means that it does not follow the convention of the commands, and does not
require the underscore when used as an operand.

ARGUMENTS: @ABS [n] where

n is a number
USAGE:

EXAMPLES:

While Moving Yes Minimum n value -2147483647.9999

In a Program Yes Maximum n value 2147483647.9999

Not in a program Yes Default Value ---

Can be Interrogated No Default Format ---

Used as an Operand Yes Distributed Control No, Local

OE 0,0,0,0 Program TEST

VAR1=-45.6 Set a variable equal to -45.6

MG @ABS[VAR1] Display the absolute value of VAR1

VAR2=@ABS[VAR1]+100.404 Perform calculation

EN End of program
54

LEGEND-MC User’s Manual
AC (Acceleration)
[Motion]

DESCRIPTION:

The Acceleration (AC) command sets the linear acceleration rate for independent moves, such as PR, PA
and JG moves. The parameters input will be rounded down to the nearest factor of 1024. The units of the
parameters are counts per second squared. The acceleration rate may be changed during motion. The DC
command is used to specify the deceleration rate.

ARGUMENTS: AC x, y, z, w or ACX=x or AC a,b, c, d, e, f, g, h where

x, y z, w, or a, b, c, d, e, f, g, h are unsigned integers

USAGE:

OPERAND USAGE:

_ACn contains the value of acceleration in counts/sec2 where n is an axis letter.

RELATED COMMANDS:

EXAMPLES:

NOTES: Specify realistic acceleration rates based on your physical system such as motor torque rating, loads, and amplifier
current rating. Specifying an excessive acceleration will cause large following error during acceleration and the motor will
not follow the commanded profile. The acceleration feedforward command FA will help minimize error during accelera-
tion.

While Moving Yes Minimum Value 1024

In a Program Yes Maximum Value 67107840

Command Line Yes Default Value 256000

Can be Interrogated Yes Default Format 8.0

Used as an Operand Yes Distributed Control Specific Axis

"DC" Specifies deceleration rate.

"FA" Feedforward Acceleration.

"IT" Smoothing constant - S-curve

AC 150000 Set acceleration to 150000 counts/sec2

AC ? Request the current acceleration setting

0149504 Returned Acceleration (resolution, 1024)

V=_ACX Assigns the current acceleration setting to the
variable V
55

LEGEND-MC User’s Manual
@ACOS (Arc Cosine)
[Function]

DESCRIPTION:

@ACOS returns the arc cosine, in degrees, of a number or variable which is inserted in square brackets.
Note that the @ACOS command is a function, which means that it does not follow the convention of
other commands and does not require the underscore when used as an operand.

ARGUMENTS: @ACOS [n] where

n is a number
USAGE:

EXAMPLES:

While Moving Yes Minimum n value -1

In a Program Yes Maximum n value 1

Not in a program Yes Default Value ---

Can be Interrogated No Default Format ---

Used as an Operand Yes Distributed Control No, Local

#TEST Program TEST

VAR1=.707 Set a variable equal to .707

MG @ACOS[VAR1] Display the absolute value of VAR1

VAR2=@ACOS[VAR1]+100.404 Perform calculation

EN End of program
56

LEGEND-MC User’s Manual
AD (After Distance)
[Trippoint]

DESCRIPTION:

The After Distance (AD) command is a trippoint used to control the timing of events. This command will
hold up the execution of the following command until one of the following conditions have been met:

1. The commanded motor position crosses the specified relative distance from the start of the
move.

2. The motion profiling on the axis is complete.

3. The commanded motion is in the direction which moves away from the specified position.

The units of the command are quadrature counts. The motion profiler must be on or the trippoint will
automatically be satisfied.

NOTE: AD will be affected when motion smoothing time constant, IT, is not 1. See IT command for more
information.

ARGUMENTS: ADx, y, z, w or ADX=x or AD a,b, c, d, e, f, g, h where

x, y z, w, or a, b, c, d, e, f, g, h are unsigned integers
USAGE:

RELATED COMMANDS:

EXAMPLES:

NOTE: The AD command is accurate to the number of counts that occur in 2 msec. Multiply speed by 2 msec to obtain the
maximum position error in counts. Remember AD measures incremental distance from start of move on one axis.

While Moving Yes Minimum Value 0

In a Program Yes Maximum Value 2147483647

Command Line Yes Default Value ---

Can be Interrogated No Default Format ---

Used as an Operand No Distributed Control Specific Axis

"AR" After Relative distance for sequential
triggering

“AP” After Absolute Position

#A;DP0 Begin Program

PR 10000 Specify position

BG Begin motion

AD 5000 Wait until profiler passes 5000 units from start
of move.

MG "Halfway" ;TP Send message

EN End Program
57

LEGEND-MC User’s Manual
AF (Analog Feedback)
[Configuration]

DESCRIPTION:

The Analog Feedback (AF) command is used to set an axis with analog feedback instead of digital feedback
(quadrature/pulse dir). As the analog feedback is decoded by a 12-bit A/D converter, an input voltage of 10
volts is decoded as a position of 2047 counts and a voltage of -10 volts corresponds to a position of -2048
counts.

ARGUMENTS: AF x,y,z,w or AFX=x or AF a,b,c,d,e,f,g,h where

x,y,z,w or a, b, c, d, e, f, g, h

1 = Enables analog feedback

0 = Disables analog feedback and switches to digital feedback

"?" returns a 0 or 1 which states whether analog feedback is enabled for the specified axes.

USAGE:

OPERAND USAGE:

_AFn returns the current feedback setting where n is an axis letter

RELATED COMMANDS:

EXAMPLES:

While Moving No Minimum Value 0

In a Program Yes Maximum Value 1

Command Line Yes Default Value 0

Can be Interrogated Yes Default Format -

Used as an Operand Yes Distributed Control Specific Axis

"CE" Configure Encoder

AF 1,0,0,1 Analog feedback on X and W axis

V1 = _AFX Assign feedback type to variable

AF ?,?,? Interrogate feedback type of X, Y, Z
58

LEGEND-MC User’s Manual
AI (After Input)
[Trippoint]

DESCRIPTION:

The AI command is used in motion programs to wait until after the specified input condition has occurred.
If n is positive, it waits for the input to go high. If n is negative, it waits for n to go low. To wait for a
transition from high to low or low to high, put two AI commands together. AI is only available for local
inputs.

ARGUMENTS: AI +/-n where

n is a signed integer

USAGE:

RELATED COMMANDS:

EXAMPLES:

NOTE: The AI command actually halts execution until specified input is at desired logic level. Use the conditional Jump
command (JP) or input interrupt (II) if you do not want the program sequence to halt.

While Moving Yes Minimum Value 1

In a Program Yes Maximum Value 8

Command Line Yes Default Value ---

Can be Interrogated No Default Format ---

Used as an Operand No Distributed Control No, Local

@IN[n] Function to read digital input 1 through 8

"II" Input interrupt

#ININT Special label for input interrupt

#A Begin Program

AI 7 Wait until input 7 is high

SP 10000 Speed is 10000 counts/sec

AC 20000 Acceleration is 20000 counts/sec2

PR 400 Specify position

BG Begin motion

AI+ 7; AI- 7 Wait for falling edge on input 7

EN End Program
59

LEGEND-MC User’s Manual
AL (Arm Latch)
[Setting]

DESCRIPTION:

The AL command enables the latching function (high speed position capture) of the controller. When the
AL command is used to arm the position latch, the encoder position of the main encoder input will be
captured upon a low going signal on Input 1. When interrogated or used in an operand the AL command will
return a 1 if the latch is armed or a zero after the latch has occurred. The command RL returns the captured
position value. The CN command will change the polarity of the latch.

ARGUMENTS: ALn where

n = XYZW or ABCDEFGH for the main encoder latch and

n = SX, SY, SZ, SW or SA, SB, SC, SD, SE, SF, SG, SH for the auxiliary encoder latch

USAGE:

OPERAND USAGE:

RELATED COMMANDS:

EXAMPLES:

While Moving Yes Minimum Value n/a

In a Program Yes Maximum Value n/a

Command Line Yes Default Value n/a

Can be Interrogated No Default Format n/a

Used as an Operand Yes Distributed Control Specific Axis

_ALn State Meaning

0 Neither Armed

1 Main Armed

2 Auxiliary Armed

3 Both Armed

"RL" Report Latch

"CN" Configure

#START Start program

ALX Arm latch on X axis

JG 50000 Set up jog at 50000 counts/sec

BG Begin the move

#LOOP Loop until latch has occurred

JP #LOOP,_ALX=1

RL Transmit the latched position

EN End of program
60

LEGEND-MC User’s Manual
AM (After Motion)
[Trippoint]

DESCRIPTION:

The AM command is a trippoint used to control timing of events. This command holds up execution of the
following commands until the current move on the specified axis or axes is completed. AM occurs when
the profiler is finished generating the last position command. However, the servo motor may not be in final
position. Use TE to verify position error for servos or use the MC trippoint to wait until final position is
reached by the servo.

ARGUMENTS: AM XYZWS or ABCDEFGH where

X, Y, Z, W or A, B, C, D, E, F, G, H are axis designators. S indicates an interpolation sequence. No argu-
ment specifies that motion on all axes is complete.

USAGE:

RELATED COMMANDS:

EXAMPLES:

NOTE: AM command controls the timing between multiple move sequences. If the motor is in the middle of a position rela-
tive move (PR), a position absolute move (PA, BG) cannot be made until the first move is complete. Use AM to pause the
program sequences until the first motion is complete. AM tests for profile completion. Another testing method is to query the
operand, _BG. This is equal to 1 during motion, and 0 when motion profiling is complete.

While Moving Yes Minimum Value n/a

In a Program Yes Maximum Value n/a

Command Line Yes Default Value ---

Can be Interrogated No Default Format ---

Used as an Operand No Distributed Control Specific Axis

"BG" _BG returns a 0 if motion complete

“MC” Actual Motion Complete

#MOVE Start of program

PR 5000 Position relative move

BG Begin motion

AM Wait until motion is complete

EN End of Program

#F;DP 0 Program F

PR 5000 Position relative move

BG Begin motion

AM Wait until motion is complete

MG "DONE";TP Print message

EN End of Program
61

LEGEND-MC User’s Manual
@AN (Analog Input)
[Function]

DESCRIPTION:

@AN returns the value of an analog input as a voltage (+/-10V). Note that the @AN command is a
function, which means that it does not follow the convention of other commands, and does not require the
underscore when used as an operand. The resolution is 14 bit, or 1.2mV per bit. To read analog inputs
from a slave controller, use the SA command.
When using this command to access I/O on a slave controller in distributed control mode, use it with the handle for
outbound master commands. Do not use the handle which is for incoming slave update packets. For example, if a
slave is connected on handles E and F, reference the I/O for the slave on handle E.

ARGUMENTS: @AN [n] where

n is an unsigned integer
USAGE:

EXAMPLES:

While Moving Yes Minimum n Value 1

In a Program Yes Maximum n Value 2

Not in a Program Yes Default n Value n/a

Can be Interrogated No Default Format 10.4
Used as an Operand Yes Distributed Control Use SA

#TEST Program TEST

MG @AN[2] Display the value of analog input #2 as a
voltage

JGX=@AN[2]*10000 Set jog speed according to analog input

SAA=”MG @AN[2]” Sends command MG @AN[2] to slave on
handle A

Analog3=_SAA Returns slave response to SA command

BGX Begin Move

EN End of program
62

LEGEND-MC User’s Manual
AO (Analog Out)
[I/O]

DESCRIPTION:

The AO command sets the analog output voltage of the local analog output or ModBus devices connected
via Ethernet.

ARGUMENTS: AO m, n where

m is either the local analog output voltage ranging from 9.9982 to -9.9982 or the I/O number calculated
using the following equations:

m = (SlaveAddress*1000) + (HandleNum*1000) + (Module-1)*4) + (Bitnum-1)

Slave Address is used when the ModBus device has slave devices connected to it and specified as
Addresses 0 to 225. Please note that the uses for ModBus are very rare and this number will usually be 0.

HandleNum is the handle specifier from A to P (1 - 16).

Module is the position of the module in the rack from 1 to 16.

BitNum is the I/O point in the module from 1 to 4.

n = the voltage which ranges from 9.9982 to –9.9982. If m is < 1000, n is omitted.

USAGE:

OPERAND USAGE: _AO returns the value of the local analog output in volts.

RELATED COMMANDS:

EXAMPLES:

While Moving Yes Minimum n Value -9.9982

In a Program Yes Maximum n Value 9.9982

Command Line Yes Default Value n/a

Can be Interrogated No Default Format ---

Used as Operand Yes, local only Distributed Control Use SA

"SB" Set Bit

"CB" Clear Bit

"MB" Modbus

AO -3.4 Sets local analog output to -3.4V

AO 6016, 8.2 Sets analog output on modbus device on
handle F to 8.2V

SAA=”AO”,2.7 Set analog output of slave on handle A to 2.7V

SAA=”MG”,”_AO” Send command MG_AO to slave controller on
handle A

VAR1=_SAA Store the returned value to VAR1
63

LEGEND-MC User’s Manual
AP (After Absolute Position)
[Trippoint]

DESCRIPTION:

The After Position (AP) command is a trippoint used to control the timing of events. This command will
hold up the execution of the following command until one of the following conditions have been met:

1. The commanded motor position crosses the specified absolute position.

2. The motion profiling on the axis is complete.

3. The commanded motion is moving away from the specified position.

The units of the command are quadrature counts. The motion profiler must be active or the trippoint will
automatically be satisfied.

ARGUMENTS: AP x, y, z, w or APX=x or AP a,b, c, d, e, f, g, h where

x, y z, w, or a, b, c, d, e, f, g, h are unsigned integers

USAGE:

RELATED COMMANDS:

EXAMPLES:

NOTE: The accuracy of the AP command is the number of counts that occur in 2 msec. Multiply the speed by 2 msec to
obtain the maximum error. AP tests for absolute position. Use the AD command to measure incremental distances.

While Moving Yes Minimum Value -2147483648

In a Program Yes Maximum Value 2147483647

Command Line Yes Default Value ---

Can be Interrogated No Default Format ---

Used as an Operand No Distributed Control Specific Axis

"AR" Trippoint for relative distances

“AD” After Distance

"MF" Trippoint for forward motion

#TEST Program B

DP0 Define position as zero

JG 1000 Set jog with speed of 1000 counts/sec

BG Begin move

AP 2000 After passing position 2000

V1=_TP Assign V1 the Xaxis X position

MG "Position is", V1 Print Message

ST Stop axis

EN End of Program
64

LEGEND-MC User’s Manual
AR (After Relative)
[Trippoint]

DESCRIPTION:

The After Relative (AR) command is a trippoint used to control the timing of events. This command will
hold up the execution of the following command until one of the following conditions have been met:

1. The commanded motor position crosses the specified relative distance from either the start of
the move or the last AR or AD command.

2. The motion profiling on the axis is complete.

3. The commanded motion is in the direction which moves away from the specified position.

The units of the command are quadrature counts. The motion profiler must be active or the trippoint will
automatically be satisfied.

ARGUMENTS: AR x, y, z, w or ARX=x or AR a, b, c, d, e, f, g, h where

x, y z, w, or a, b, c, d, e, f, g, h are unsigned integers

USAGE:

RELATED COMMANDS:

EXAMPLES:

NOTE: AR is used to specify incremental distance from last AR or AD command. Use AR if multiple position trippoints are
needed in a single motion sequence.

While Moving Yes Minimum Value 0

In a Program Yes Maximum Value 2147483647

Command Line Yes Default Value ---

Can be Interrogated No Default Format ---

Used as an Operand No Distributed Control Specific Axis

“AD” After Distance

"AP" Trippoint for After absolute Position

“AR” Trippoint for Relative Distance

#A;DP 0 Begin Program

JG 50000 Specify jog speed

BG Begin motion

#B Label

AR 5000 After passing 5000 counts of relative distance
on X-axis from the last trippoint

MG "Passed_X";TP Send message

JP #B Jump to Label #B

EN End Program
65

LEGEND-MC User’s Manual
AS (At Speed)
[Trippoint]

DESCRIPTION:

The AS command is a trippoint that occurs when the generated motion profile has reached the specified
speed. This command will hold up execution of the following command until the speed is reached. The AS
command will operate after either accelerating or decelerating. If the commanded speed is not reached, the
trippoint will be triggered after the motion is stopped (after deceleration).

ARGUMENTS: AS XYZWS or ABCDEFGH where

X, Y, Z, W or A, B, C, D, E, F, G, H are axis designators. S indicates an interpolation sequence. No argu-
ment specifies that motion on all axes is complete.

USAGE:

EXAMPLES:

WARNING: The AS command applies to a trapezoidal velocity profile only with linear acceleration. AS used with S-curve
profiling may be inaccurate.

While Moving Yes Minimum Value n/a

In a Program Yes Maximum Value n/a

Command Line Yes Default Value ---

Can be Interrogated No Default Format ---

Used as an Operand No Distributed Control Specific Axis

#SPEED Program A

PR 100000 Specify relative position

SP 10000 Specify speed

BG Begin motion

AS Wait until after commanded speed is reached

MG "At Speed" Print Message

EN End of Program
66

LEGEND-MC User’s Manual
@ASIN (Arc Sine)
[Function]

DESCRIPTION:

@ASIN returns the arc sine, in degrees, of a number or variable which is inserted in square brackets.
Note that the @ASIN command is a function, which means that it does not follow the convention of
other commands, and does not require the underscore when used as an operand.

ARGUMENTS: @ASIN [n] where

n is an unsigned integer
USAGE:

EXAMPLES:

While Moving Yes Minimum n value -1

In a Program Yes Maximum n value 1

Not in a program Yes Default Value ---

Can be Interrogated No Default Format ---

Used as an Operand Yes Distributed Control No, Local

#TEST Program TEST

MG @ASIN[VAR1] Set variable

VAR1=.707 Display the arc sine of .707

VAR2=@ASIN[VAR1]+5 Perform calculation

EN End of program
67

LEGEND-MC User’s Manual
AT (After Time)
[Trippoint]

DESCRIPTION:

The AT command is a trippoint which is used to hold up execution of the next command until after the
specified time has elapsed. The time is measured with respect to a defined reference time. AT 0 establishes
the initial reference. AT n specifies n msec from the reference. AT -n specifies n msec from the reference
and establishes a new reference after the elapsed time period. This command is useful for waiting an
accurate amount of time duration while still being able to perform some other operations as long as they
require less time than the AT time.

ARGUMENTS: AT n where

n is a signed integer

n = 0 defines a reference time at current time

positive n waits n msec from reference

negative n waits n msec from reference and sets new reference after elapsed time period

(AT -n is equivalent to AT n; AT 0)

USAGE:

EXAMPLES:

The following commands are sent sequentially:

While Moving Yes Minimum Value -2147483647

In a Program Yes Maximum Value 2147483647

Command Line Yes Default Value ---

Can be Interrogated No Default Format ---

Used as an Operand No Distributed Control No, Local

AT 0 Establishes reference time 0 as current time

AT 50 Waits 50 msec from reference 0

AT 100 Waits 100 msec from reference 0

AT -150 Waits 150 msec from reference 0 and sets new
reference at 150

AT 80 Waits 80 msec from new reference (total
elapsed time is 230 msec)
68

LEGEND-MC User’s Manual
@ATAN (Arc Tangent)
[Function]

DESCRIPTION:

@TAN returns the arc tangent, in degrees, of a number or variable which is inserted in square brackets.
Note that the @ATAN command is a function, which means that it does not follow the convention of
other commands, and does not require the underscore when used as an operand.

ARGUMENTS: @ATAN [n] where

n is an unsigned integer
USAGE:

EXAMPLES:

While Moving Yes Minimum n value -1

In a Program Yes Maximum n value 1

Not in a program Yes Default Value ---

Can be Interrogated No Default Format ---

Used as an Operand Yes Distributed Control No, Local

#TEST Program TEST

MG @ATAN[VAR1] Set variable

VAR1=.707 Display the arc sine of .707

VAR2=@ATAN[VAR1]+5 Perform calculation

EN End of program
69

LEGEND-MC User’s Manual
BG (Begin)
 [Motion]

DESCRIPTION:

The BG command starts motion. When used as an operand, the BG command will return a 1 if there is a
commanded motion in progress, a 0 otherwise. The BG command will result in a command error if a move
is already in progress, the servo is not enabled or a limit switch is preventing motion.

ARGUMENTS: BG XYZWS or ABCDEFGH where

X, Y, Z, W, S or A, B, C, D, E, F, G, H specify the axis or sequence. No argument specifies that motion on
all axes is complete.

USAGE:

NOTE: BG, for a distributed control axis, forces the slave to send a QW packet immediately.

_BGn data comes from QW packet.

OPERAND USAGE:

_BGn contains a ‘0’ if motion complete on the axis, otherwise contains a ‘1’ where n is an axis letter.

RELATED COMMANDS:

EXAMPLES:

NOTE: You cannot give another BG command until current BG motion has been completed. Use the AM trippoint to wait
for motion complete between moves. Another method for checking motion complete is to test for _BG being equal to 0.

While Moving No Default Value ---

In a Program Yes Default Format ---

Command Line Yes

Can be Interrogated No

Used as an Operand Yes Distributed Control Specific Axis

"AM" After motion complete

"ST" Stop motion

PR 2000 Set up for a relative move

BG Begin motion

AM Wait until motion is complete

HM Issue homing command

BG Begin motion

AM Wait until motion is complete

JG 1000 Issue jog command

BG Begin motion

STATE=_BGX Assign a 1 to STATE if the axis is performing
a move
70

LEGEND-MC User’s Manual
BL (Backward Limit)
[Setting]

DESCRIPTION:

The BL command sets the reverse software limit. If this limit is exceeded during a commanded motion, the
motion will decelerate to a stop. Reverse motion beyond this limit is not permitted. The reverse limit is
activated at position n-1 count. To disable the reverse limit, set n to -2147483648. The units are in
quadrature counts.

ARGUMENTS: BLx, y, z, w or BLX=x or BL a, b, c, d, e, f, g, h where

x, y z, w, or a, b, c, d, e, f, g, h are signed integers

“?” returns the reverse software limit value

-2147483648 turns off the reverse limit.

USAGE:

OPERAND USAGE:

_BLn contains the value of the reverse software limit where n is an axis letter.

RELATED COMMANDS:

EXAMPLES:

While Moving Yes Minimum Value -2147483648

In a Program Yes Maximum Value 2147483647

Command Line Yes Default Value -2147483648

Can be Interrogated Yes Default Format Position format

Used as an Operand Yes Distributed Control Specific Axis

"FL" Forward Limit

"PF" Position Formatting

#TEST Test Program

AC 1000000 Set Acceleration Rate

DC 1000000 Set Deceleration Rate

BL -15000 Set Reverse Limit

JG -5000 Jog Reverse

BG Begin Motion

AM After Motion (soft limit occurred)

TP Tell Position

EN End Program
71

LEGEND-MC User’s Manual
BN (Burn Parameters)
[General]

DESCRIPTION:

The BN command saves certain controller parameters in non-volatile EEPROM memory. This command
takes approximately one second to execute and must not be interrupted. If the burn is disrupted by power
failure, a memory checksum error will result. The controller returns a <:> when the Burn is complete.

PARAMETERS SAVED DURING BURN:

ARGUMENTS: None

USAGE:

VERY IMPORTANT!
Realize that the current values of the above parameters are saved in the EEPROM when the BN command
is executed.

AC EO KI OP
AF EP KP PF
BL ER LZ SB

ET (table) MM SP
CE FA MO (MOTOR OFF or ON) TL
CF FL MT TM
CN GA NA TR
CW GR NB VA
DC IA NF VD
DV IL NZ VF
EA IT OE VS
EM KD OF VT

While Moving Yes Default Value ---

In a Program Yes Default Format ---

Command Line Yes

Can be Interrogated No

Used as an Operand Yes Distributed Control Use SA
72

LEGEND-MC User’s Manual
BP (Burn Program)
[General]

DESCRIPTION:

The BP command saves the application program in non-volatile EEPROM memory. This command
typically takes up to 10 seconds to execute and must not be interrupted. If the burn is disrupted by power
failure, a memory checksum error will result. The controller returns a <: >when the Burn is complete.

ARGUMENTS: None

USAGE:
While Moving No Default Value ---

In a Program No

Command Line Yes

Can be Interrogated No

Used as an Operand No Distributed Control Use SA
73

LEGEND-MC User’s Manual
BV (Burn Variables)
[General]

DESCRIPTION:

The BV command saves the defined variables and arrays in non-volatile EEPROM memory. This command
typically takes up to 2 seconds to execute and must not be interrupted. If the burn is disrupted by power
failure, a memory checksum error will result. The controller returns a <:> when the Burn variables are
complete.

ARGUMENTS: None

USAGE:
While Moving No Default Value ---

In a Program Yes

Command Line Yes

Can be Interrogated No

Used as an Operand Yes Distributed Control Use SA
74

LEGEND-MC User’s Manual
CB (Clear Bit)
[I/O]

DESCRIPTION:

The CB command clears a bit on the output port by setting it to logic zero. Slave controller or Modbus
outputs can be cleared also.

When using this command to access I/O on a slave controller in distributed control mode, use it with the
handle for outbound master commands. Do not use the handle which is for incoming slave update packets.
For example, if a slave is connected on handles E and F, reference the I/O for the slave on handle E.

ARGUMENTS: CB n where

n is an integer corresponding to a specific output on the controller to be cleared (set to 0). The first output
on the controller is denoted as output 1. A LEGEND-MC controller has 4 digital outputs plus applicable I/
O connected by Modbus.

DISTRIBUTED CONTROL:

MODBUS:

NOTE: When using Modbus devices, the I/O points of the modbus devices are calculated
using the following formula:
n = (SlaveAddress*1000) + (HandleNum*1000) + ((Module-1)*4) + (Bitnum-1)

Slave Address is used when the ModBus device has slave devices connected to it and specified as
Addresses 0 to 255. The use of slave devices for modbus are very rare and this number will usually be 0.

HandleNum is the handle specifier from A to P (1 - 16).

Module is the position of the module in the rack from 1 to 16.

BitNum is the I/O point in the module from 1 to 4.

USAGE:

RELATED COMMANDS:

Handle Command Handle Command
A CB101 ~ CB104 I CB901 ~ CB904
B CB201 ~ CB204 J CB1001 ~ CB1004
C CB301 ~ CB304 K CB1101 ~ CB1104
D CB401 ~ CB404 L CB1201 ~ CB1204
E CB501 ~ CB504 M CB1301 ~ CB1304
F CB601 ~ CB604 N CB1401 ~ CB1404
G CB701 ~ CB704 O CB1501 ~ CB1504
H CB801 ~ CB804 P CB1601 ~ CB1604

While Moving Yes Default Value ---

In a Program Yes Default Format ---

Command Line Yes

Can be Interrogated No

Used as an Operand No Distributed Control Offset by 100

"SB" Set Bit

"OP" Define all outputs
75

LEGEND-MC User’s Manual
EXAMPLES:
CB 1 Clear output bit 1

CB 2 Clear output bit 2

CB 3 Clear output bit 3

CB 602 Clear output 2 on slave controller on handle F

CB 1505 Clear the fifth output on the SMC3010
connected on handle "O."
76

LEGEND-MC User’s Manual
CD (Contour Data)
[Motion]

DESCRIPTION:

The CD command specifies the incremental position for an arbitrary motion profile. The units of the
command are in quadrature counts. This command is only applicable in the Contour Mode (CM).

ARGUMENTS: CD x, y, z, w or CDX=x or CD a, b, c, d, e, f, g, h where

x, y z, w, or a, b, c, d, e, f, g, h are signed integers

USAGE:

RELATED COMMANDS:

EXAMPLES:

While Moving Yes Minimum Value -32767

In a Program Yes Maximum Value +32767

Command Line Yes Default Value 0

Can be Interrogated No Default Format ---

Used as an Operand No Distributed Control No, Local

"CM" Contour Mode

"WC" Wait for Contour

"DT" Time Increment

CM Specify Contour Mode

DT 4 Specify time increment for contour mode

CD 200 Specify incremental positions of 200 counts

WC Wait for complete

CD 100 New position data

WC Wait for complete

DT0 Stop Contour

CD 0 Exit Mode
77

LEGEND-MC User’s Manual
CE (Configure Encoder)
[Configuration]

DESCRIPTION:

The CE command configures the encoder inputs to the quadrature type or the pulse and direction type. It
also allows inverting the polarity. The configuration applies independently to the main axis encoder and the
auxiliary encoder inputs.

Warning: This command interacts with the CE command, which reverses the incoming encoder signals. Use
caution (motor off, machine estopped) when changing the MT or CE commands. If the two commands are
not in agreement with each other, the motor will run away at full speed when enabled.

ARGUMENTS: CE x, y, z, w or CEX=x or CE a, b, c, d, e, f, g, h where

x, y z, w, or a, b, c, d, e, f, g, h are unsigned integers

Each integer is the sum of two integers r and s which configure the main and the auxiliary encoders
according to the chart below.

“?” returns the encoder inputs

For example: CEX = 10 implies r = 2 and s = 8, both encoders are reversed quadrature.

USAGE:

OPERAND USAGE:

_CEn contains the value of encoder type for the main and auxiliary encoder where n is an axis letter.

RELATED COMMMANDS:

EXAMPLES:

R = MAIN ENCODER TYPE S = AUXILIARY ENCODER TYPE

0 Normal quadrature 0 Normal quadrature

4 Normal pulse and direction

2 Reversed quadrature 8 Reversed quadrature

12 Reverse pulse and direction

While Moving Yes Minimum Value 0

In a Program Yes Maximum Value 10

Command Line Yes Default Value 0

Can be Interrogated Yes Default Format 2.0

Used as an Operand Yes Distributed Control Specific Axis

"MT" Specify motor type

CE 0 Configure encoders

CE ? Interrogate configuration

V = _CE Assign configuration to a variable
78

LEGEND-MC User’s Manual
CF (Configure Messages)
[Configuration]

DESCRIPTION:

Sets the controller’s default port for unsolicited messages. By default, the LEGEND-MC controller will
send unsolicited responses to the RS-232 serial port. An unsolicited message is one generated in the
controller, i.e.; a program fault message or a message resulting from the MG command with no port
designation specified.

ARGUMENTS: CF n where

n is A through P for Ethernet handles 1 thru 16, S for serial port.

USAGE:

OPERAND USAGE:

_CF will return the current port selected for unsolicited responses from the controller. The _CF will return
a decimal value of the ASCII code.

EXAMPLES:

While Moving Yes Default Value 83 (“S”)

In a Program Yes Default Format Decimal
representation

Command Line Yes Distributed Control Local Controller

CFA Select Ethernet handle A to return unsolicited
responses.

MG_CF Interrogate configuration

:65.000 Response from _CF showing handle A as
default port. 65 is the ASCII value for “A”.
79

LEGEND-MC User’s Manual
CH (Connect Handle)
[General]

DESCRIPTION:

The CH command is used to associate master and slave controllers in a distributed control system. The
master controller must associate one Ethernet handle for sending commands to each slave, and one Ethernet
handle for receiving status information from each slave. Note that these handles must first be opened before
assigning them with this command, see the command IH. This command is obsolete. Please use the HC
command instead.

ARGUMENTS: CHx=h1,h2 where

x is X, Y, Z, W or A, B, C, D, E, F, G, H.

h1 is the handle (character) to be used to send commands to the slave controller.

h2 is the handle (character) to be used for receiving status from the slave controller.
USAGE:

RELATED COMMANDS:

EXAMPLE:

An example subroutine demonstrating how to release handles:

While Moving Yes Default Value -

In a Program Yes Default Format -

Command Line Yes Distributed Control No, Local

“IH” Set Internet Handles

“NA” Set Number of Axes for Distributed Control System

“QW” Set Slave Data record Update Rate

CHY=A,B Using one LEGEND-MC as a master and one LEGEND-MC as a slave
under TCP/IP. This command assigns a slave, identified by the Y axis
designator, with Handle A for commands and Handle B for status
returned from the slave.

#RELEASE Release handles

MG "Releasing..." Diagnostic message

IHE=>-2 Release handle E

#WAIT; JP #WAIT,_IHE2<>0 Wait until handle is released

IHF=>-2 Release handle

#WAIT1; JP #WAIT1,_IHF2<>0 Wait until handle is released

EN End subroutine
80

LEGEND-MC User’s Manual
An example subroutine demonstrating how to assign handles:

An example subroutine demonstrating how to connect handles:

#ASSIGN Assign handles

MG "Assigning..." Diagnostic message

IHE=192,168,3,104>2 Must let first IH command succeed before setting another IH

#WAITA; JP #WAITA,_IHE2<>-2 Wait until handle is connected

IHF=192,168,3,104<504>2 Assign response handle to slave

#WAITB; JP #WAITB,_IHF2<>-2 Wait until handle is connected

EN End subroutine

#CONNECT Connect to slave

MG "Connecting..." Diagnostic message

NA2 Set two axis configuration

CHY=E,F Connect the handles

QWF=4 Set slave response update (don’t need to set QW for com-
mands on handle A)

EN End subroutine
81

LEGEND-MC User’s Manual
CM (Contour Mode)
[Setting]

DESCRIPTION:

The Contour Mode is initiated by the instruction CM. This mode allows the generation of an arbitrary
motion trajectory. The CD command specifies the position increment, and the DT command specifies the
time interval.

The CM? or _CM commands can be used to check the status of the Contour Buffer. A value of 1 returned
indicates that the Contour Buffer is full. A value of 0 indicates that the Contour Buffer is empty.

ARGUMENTS: CM XYZW or ABCDEFGH

CM? Returns a 1 if the contour buffer is full, and 0 if the contour buffer is empty.

USAGE:

OPERAND USAGE:

_CM contains a ‘0’ if the contour buffer is empty, otherwise contains a ‘1’ meaning the buffer is
full.

RELATED COMMANDS:

EXAMPLES:

While Moving No Default Value ---

In a Program No Default Format 1.0

Command Line Yes

Can be Interrogated No

Used as an Operand Yes Distributed Control No

"CD" Contour Data

"WC" Wait for Contour

"DT" Time Increment

V=_CM;V= Return Contour Buffer Status

1 Contour Buffer is full

CM Specify Contour Mode
82

LEGEND-MC User’s Manual
CN (Configure Limit Switches)
[Configuration]

DESCRIPTION:

The CN command configures the polarity of the limit switches, the home switch and the latch input.

ARGUMENTS: CN m,n,o where

m, n, o are integers .

*NOTE: The latch function will occur within 25usec only when used in active low mode, the opto
isolator requires more time if active high.

USAGE:

OPERAND USAGE:

_CN0 Contains the limit switch configuration.

_CN1 Contains the home switch configuration.

_CN2 Contains the latch input configuration.

RELATED COMMANDS:

EXAMPLES:

m = 1 Limit switches active high

-1 Limit switches active low

n = 1 Home switch configured to drive motor in forward direction when input is high
upon initial HM execution. See HM and FE commands

-1 Home switch configured to drive motor in reverse direction when input is high
upon initial HM execution. See HM and FE commands

o = 1 * Latch input is active high

-1 Latch input is active low

While Moving Yes Default Value -1.-1.-1

In a Program Yes Default Format 2.0

Command Line Yes

Can be Interrogated No

Used as an Operand Yes Distributed Control All Axes

"MT" Motor Type

CN 1,1 Sets limit and home switches to active high

CN, -1 Sets input latch active low

MG_CN1 Returns Home input configuration

MG_CN2 Returns Latch input configuration
83

LEGEND-MC User’s Manual
@COM (2’s Complement)
[Function]

DESCRIPTION:

@COM returns the complement of a number or variable which is inserted in square brackets. Note that the
@COM command is a function, which means that it does not follow the convention of other commands,
and does not require the underscore when used as an operand.

ARGUMENTS: @COM [n] where

n is a number
USAGE:

EXAMPLES:

While Moving Yes Minimum n value -2147483647.9999

In a Program Yes Maximum n value 2147483647.9999

Not in a program Yes Default Value ---

Can be Interrogated No Default Format ---

Used as an Operand Yes Distributed Control No, Local

#TEST Program TEST

VAR1=1234 Set variable

MG @COM[VAR1] Display the complement of 1234

VAR2=@COM[VAR1]+99 Perform calculation

EN End of program
84

LEGEND-MC User’s Manual
@COS (Cosine)
[Function]

DESCRIPTION:

@COS returns the cosine of a number or variable given in square brackets using units of degrees. Note
that the @COS command is a function, which means that it does not follow the convention of the
commands, and does not require the underscore when used as an operand.

ARGUMENTS: @COS [n] where

n is a number

USAGE:

EXAMPLES:

While Moving Yes Minimum n value -32768

In a Program Yes Maximum n value 32768

Not in a program Yes Default Value ---

Can be Interrogated No Default Format ---

Used as an Operand Yes Distributed Control No, Local

#TEST Program TEST

VAR1=60 Set variable

MG @COS[VAR1] Display the value of the sine of VAR1

VAR2=@COS[VAR1]+9 Perform calculation

EN End of program
85

LEGEND-MC User’s Manual
CS (Clear Sequence)
[General]

DESCRIPTION:

The CS command will remove VP or LI commands stored in a motion sequence. Please note that after a
sequence has been run, the CS command is not necessary to enter a new sequence. This command is
useful if you have correctly specified VP or LI commands.

When used as an operand, _CS returns the number of the segment in the sequence, starting at zero. The
instruction _CS is valid in the Linear Mode, LM, Vector Mode, VM and Contour Mode, CM .

ARGUMENTS: none

USAGE:

EXAMPLES:

While Moving No Default Value ---

In a Program Yes Default Format ---

Not in a program Yes

Can be Interrogated No

Used as an Operand Yes Distributed Control No, Local

#CLEAR Label

VP 1000,2000 Vector position

VP 4000,8000 Vector position

CS Clear vectors

VP 1000,5000 New vector

VP 8000,9000 New vector

VE End sequence

BGS Begin motion sequence

EN End of program
86

LEGEND-MC User’s Manual
CW (Copyright)
[General]

DESCRIPTION:

The CW command has a dual usage. The CW command will return the copyright information when the
argument, n is 0. Otherwise, the CW command is used as a communications enhancement. When CW = 1,
the communication enhancement sets the MSB of unsolicited, returned ASCII characters to 1. Unsolicited
ASCII characters are those characters which are returned from the controller without being directly queried
from an external source. This is the case when a program has a command that requires the controller to
return a value or string. The benefit of this is that two-way unsolicited messages can be filtered by an
external source to retrieve answers to strings that were sent by the external source.

ARGUMENTS: CW n,m where

n is a number, either 0,1 or 2:

0 Causes the controller to return the copyright information

1 Causes the controller to set the MSB of unsolicited returned characters to 1

2 Causes the controller to not set the MSB of unsolicited characters.

“?”Returns the copyright information for the controller

m is 0 or 1 (optional)

0 Causes the controller to pause program execution when output FIFO is full until FIFO
no longer full.

1 Causes the controller to continue program execution when output FIFO is full - output
characters after FIFO is full will be lost.

USAGE:

OPERAND USAGE:

_CW contains the value of the data adjustment bit. 1 =on, 2 = off

*NOTE: The CW command can cause garbled characters to be returned by the controller. The
default state of the controller is to disable the CW command, however, the Yaskawa Y-Term soft-
ware may sometimes enable the CW command for internal usage. If the controller is reset while
the Yaskawa software is running, the CW command could be reset to the default value which
would create difficulty for the software. It may be necessary to re-enable the CW command. The
CW command status can be stored in EEPROM.

While Moving Yes* Default Value 2

In a Program Yes Default Format n/a

Command Line Yes

Can be Interrogated No

Used as an Operand Yes Distributed Control No, Local
87

LEGEND-MC User’s Manual
DA (De-allocate Variables)
[General]

DESCRIPTION:

The DA command frees array and/or variable memory space. With this command, more than one array or
variable can be specified for memory de-allocation. Different arrays and variables are separated by comma
when specified in one command. The * argument de-allocates all variables, and *[0] de-allocates all arrays.

ARGUMENTS: DA c[0],d,etc. where

c[0] - Defined array name

d - Defined variable name

* - De-allocates all the variables

*[0] - De-allocates all the arrays

DA? Returns the number of arrays available on the controller.

USAGE:

OPERAND USAGE:

_DA contains the total number of arrays available. For example, before any arrays have been defined, the
operand _DA is 14. If one array is defined, the operand _DA will return 13.

RELATED COMMANDS:

EXAMPLES:

‘Cars’ and ‘Salesmen’ are arrays and ‘Total’ is a variable.

NOTE: Since this command de-allocates the spaces and compacts the array spaces in the memory, it
is possible that execution of this command may take longer time than 2 ms.

While Moving Yes Default Value ---

In a Program Yes Default Format ---

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes Distributed Control No, Local

"DM" Dimension Array

TEMP=5 Assign 5 to the variable TEMP

DM Cars[400],Salesmen[50] Dimension 2 arrays

Total=70 Assign 70 to the variable Total

DA Cars[0],Salesmen[0],Total De-allocate the 2 arrays & variables

DA*[0] De-allocate all arrays

DA *,*[0] De-allocate all variables and all arrays

DA TEMP De-allocate variable TEMP
88

LEGEND-MC User’s Manual
DB (Dynamic Brake)
[Configuration]

DESCRIPTION:

The DB command (Dynamic Brake) is used to set or disable the dynamic brake function of the Legend
Amplifier. When Dynamic Braking is enabled, a relay inside the amplifier shorts the motor winding
together to absorb energy from the load quickly in an E-Stop situation. More specifically, when the
power is removed from the main power input or the servo is disabled (MO) motor off, the dynamic brake
function is automatically enabled if the DB command is set.

ARGUMENTS: DB x, y, z, w or DBX=x or DB a, b, c, d, e, f, g, h where

x, y z, w, or a, b, c, d, e, f, g, h are either 0 or 1.

USAGE:

OPERAND USAGE:

_DBn contains the dynamic brake setting where n is an axis letter.

EXAMPLES:

While Moving Yes Minimum Value 0

In a Program Yes Maximum Value 1

Command Line Yes Default Value 1

Can be Interrogated Yes Default Format 8.0

Used as an Operand Yes Distributed Control Specific Axis

DB1 Enable the Dynamic Brake function of the
amplifier.
89

LEGEND-MC User’s Manual
DC (Deceleration)
[Motion]

DESCRIPTION:

The Deceleration command (DC) sets the linear deceleration rate for independent moves such as PR, PA
and JG moves. The parameters will be rounded down to the nearest factor of 1024 and have units of counts
per second squared.

ARGUMENTS: DC x, y, z, w or DCX=x or DC a, b, c, d, e, f, g, h where

x, y z, w, or a, b, c, d, e, f, g, h are unsigned integers

USAGE:

OPERAND USAGE:

_DCn contains the deceleration rate in counts/sec2 where n is an axis letter.

RELATED COMMANDS:

EXAMPLES:

*NOTE: The DC command may be changed during the move in JG move, but not in PR or PA
move. For controlled deceleration in abort conditions, use the ST command.The deceleration rate
can be changed after ST.

While Moving Yes* Minimum Value 1024

In a Program Yes Maximum Value 67107840

Command Line Yes Default Value 256000

Can be Interrogated Yes Default Format 8.0

Used as an Operand Yes Distributed Control Specific Axis

"AC" Acceleration

"PR" Position Relative

"SP" Speed

"JG" Jog

"BG" Begin

"IT" Smoothing constant - S-curve

PR 10000 Specify relative position

AC 2000000 Specify acceleration rate

DC 1000000 Specify deceleration rate

SP 5000 Specify slew speed

BG Begin motion
90

LEGEND-MC User’s Manual
DE (Dual (Auxiliary) Encoder)
[Motion]

DESCRIPTION:

The DE command defines the position of the auxiliary encoder.

ARGUMENTS: DE x, y, z, w or DEX=x or DE a, b, c, d, e, f, g, h where

x, y z, w, or a, b, c, d, e, f, g, h are signed integers

USAGE:

OPERAND USAGE:

_DEn returns the current position of the specified auxiliary encoder where n is an axis letter.

EXAMPLES:

NOTE: Dual encoders are useful when you need an encoder on the motor and on the load. The encoder on the load is typi-
cally the auxiliary encoder and is used to verify the true load position. Any error in load position is used to correct the motor
position.

While Moving Yes Minimum Value -2147483647

In a Program Yes Maximum Value 2147483648

Command Line Yes Default Value n/a

Can be Interrogated Yes Default Format Position Format

Used as an Operand Yes Distributed Control Specific Axis

:DE 0 Set the auxiliary encoder position to 0

:DE? Return auxiliary encoder positions

:DUALX=_DE Assign auxiliary encoder position of X-axis to
the variable DUALX
91

LEGEND-MC User’s Manual
DL (Download)
[General]

DESCRIPTION:

The DL command prepares a controller to accept a data file from the host computer. Instructions in the file
will be accepted as a data stream without line numbers. The file is terminated using <control> Z, <control>
Q, <control> D, or \.

If no parameter is specified, downloading a data file will clear any programs in the LEGEND-MC RAM.
The data is entered beginning at line 0. If there are too many lines or too many characters per line, the
LEGEND-MC will return a “?”. To download a program after a label, specify the label name following DL.
The # argument may be used with DL to append a file at the end of the LEGEND-MC program in RAM.

ARGUMENTS: DL n

n = no argument Downloads program beginning at line 0 and erases programs in RAM.

n = #Label Begins download at line following #Label where label may be any valid program label.

n = #Begins download at end of program in RAM.

USAGE:

OPERAND USAGE:

When used as an operand, _DL gives the number of available labels. The total number of labels is 126.

RELATED COMMANDS:

EXAMPLES (from the terminal):

While Moving Yes Default Value ---

In a Program No Default Format ---

Command Line Yes

Can be Interrogated No

Used as an Operand Yes Distributed Control Local

"UL" Upload

DL; Begin download (no colon returned)

#A;PR 4000;BG Data

AM;MG DONE Data

EN Data

<control> Z End download (colon returned)
92

LEGEND-MC User’s Manual
DM (Dimension Array)
[General]

DESCRIPTION:

The DM command defines a single dimensional array with a name and total elements. The first element of
the defined array starts with element number 0 and the last element is at n-1.

ARGUMENTS: DM c[n] where

c is a name of up to eight alphanumeric characters, starting with an uppercase alphabetic character.

n is the number of entries from 1 to 8000.

DM? Returns the number of array elements available.

USAGE:

OPERAND USAGE:

_DM contains the available array space. For example, before any arrays have been defined, the operand
_DM will return 8000. If an array of 100 elements is defined, the operand _DM will return 7900.

RELATED COMMANDS:

EXAMPLES:

While Moving Yes Default Value ---

In a Program Yes Default Format ---

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes Distributed Control No, Local

"DA" Deallocate Array

DM Pets[5],Dogs[2],Cats[3] Define dimension of arrays, pets with 5
elements; Dogs with 2 elements; Cats with 3
elements

DM Tests[1000] Define dimension of array called Tests with
1000 elements
93

LEGEND-MC User’s Manual
DP (Define Position)
[Setting]

DESCRIPTION:

The DP command sets the current motor position and current command positions to a user specified value.
The units are in quadrature counts. This command will set both the TP and RP values.

ARGUMENTS: DP x, y, z, w or DPX=x or DP a, b, c, d, e, f, g, h where

x, y z, w, or a, b, c, d, e, f, g, h are signed integers

USAGE:

OPERAND USAGE:

_DPn reports the current position where n is an axis letter.

EXAMPLES:

While Moving No Minimum Value -2147483648

In a Program Yes Maximum Value +2147483647

Command Line Yes Default Value n/a

Can be Interrogated Yes Default Format Position Format

Used as an Operand Yes Distributed Control Specific Axis

:DP 0 Sets the current position of the X axis to 0

:DP -50000 Sets the current position to -50000.

:DP ?

-0050000 Returns the motor position
94

LEGEND-MC User’s Manual
DT (Delta Time)
[Motion]

DESCRIPTION:

The DT command sets the time interval for Contouring Mode. Sending the DT command once will set the
time interval for all following contour data until a new DT command is sent. 2n samples is the time
interval. Sending DT0 followed by CD0 command terminates the Contour Mode.

ARGUMENTS: DT n where

n is an integer. 0 terminates the Contour Mode.

n=1 thru 8 specifies the time interval of 2n samples. By default the sample period is 1 msec (set by TM
command); with n=1, the time interval would be 2 msec.

USAGE:

OPERAND USAGE:

_DT contains the value for the time interval for Contour Mode

RELATED COMMANDS:

EXAMPLES:

While Moving Yes Minimum Value 0

In a Program Yes Maximum Value 8

Command Line Yes Default Value 0

Can be Interrogated Yes Default Format 1.0

Used as an Operand Yes Distributed Control No, Local

"CM" Contour Mode

"CD" Contour Data

"WC" Wait for next data

DT 4 Specifies time interval to be 16 msec

DT 7 Specifies time interval to be 128 msec

#CONTOUR Begin

CM Enter Contour Mode

DT 4 Set time interval

CD 1000 Specify data

WC Wait for contour

CD 2000 New data

WC Wait

DT0 Stop contour

CD0 Exit Contour Mode

EN End
95

LEGEND-MC User’s Manual
DV (Dual Velocity (Dual Loop))
 [Configuration]
DESCRIPTION:

The DV function changes the operation of the PID servo loop. It causes the KD (derivative) term to operate
on the motor, and the KP (proportional) term and the KI (integral) term to operate on the dual encoder. This
results in improved stability in the cases where there is a backlash between the motor and the main encoder,
and where the dual encoder is mounted on the motor. See the example section.

ARGUMENTS: DV x, y, z, w or DVX=x or DV a, b, c, d, e, f, g, h where

x, y z, w, or a, b, c, d, e, f, g, h are unsigned integers

n may be 0 or 1. 0 disables the function. 1 enables the dual loop.

USAGE:

OPERAND USAGE:

_DVn contains the state of dual velocity mode where n is an axis letter and 0 = disabled, 1 = enabled.

RELATED COMMANDS:

EXAMPLES:

NOTE: The DV command is useful in backlash and resonance compensation.

While Moving Yes Minimum Value 0

In a Program Yes Maximum Value 1

Command Line Yes Default Value 0

Can be Interrogated Yes Default Format 1

Used as an Operand Yes Distributed Control Specific Axis

"KD" Damping constant

"FV" Velocity feedforward

DV 1 Enables dual loop PID

DV 0 Disables DV
96

LEGEND-MC User’s Manual
EA (ECAM Master)
[Setting]

DESCRIPTION:

The EA command selects the master axis for the electronic cam mode.

ARGUMENTS: EASX is the only applicable cam master configuration on the SMC3010.

USAGE:

RELATED COMMANDS:

EXAMPLES:

While Moving Yes Default Value n/a

 In a Program Yes Default Format n/a

Command Line Yes Distributed Control Use SA

"EB" Enable ECAM

"EC Set ECAM table index

"EG" Engage ECAM

“EM” Specify ECAM cycle

"EP" Specify ECAM table intervals & staring point

“EQ” Disengage ECAM

"ET" ECAM table

EASX Select auxiliary encoder as the master for ECAM
97

LEGEND-MC User’s Manual
EB (ECAM Enable)
 [Setting]

DESCRIPTION:

The EB function enables or disables the cam mode. In this mode, the master axis is modularized within the
cycle. This command does not initiate camming but it readies the controller for cam mode.

ARGUMENTS: EB n where

n = 1 starts cam mode and n = 0 stops cam mode.

EB? Returns a 0 if ECAM is disabled and 1 if enabled.

USAGE:

OPERAND USAGE:

_EB contains the state of Ecam mode. 0 = disabled, 1 = enabled

RELATED COMMANDS:

EXAMPLES:

NOTE: See the example section for more detailed cam examples.

While Moving Yes Default Value 0

 In a Program Yes Default Format n/a

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes Distributed Control Use SA

”EM“ Specify Ecam Cycle

”EP“ CAM table intervals & starting point

“MM” Master’s Modulus

EB1 Starts ECAM mode

EB0 Stops ECAM mode

B = _EB Return status of cam mode
98

LEGEND-MC User’s Manual
EC (ECAM Counter)
[Setting]

DESCRIPTION:

The EC function sets the index into the ECAM table. This command is only useful when entering ECAM
table values without index values and is most useful when sending commands in binary. See the command,
ET.

ARGUMENTS: EC n where

n is an integer between 0 and 256.

n = ? Returns the current value of the index into the ECAM table.

USAGE:

OPERAND USAGE:

_EC contains the current value of the index into the ECAM table.

RELATED COMMANDS:

EXAMPLES:

While Moving Yes Default Value ---

 In a Program Yes Default Format ---

Command Line Yes Distributed Control Use SA

"EA" Choose ECAM master

"EB Enable ECAM

"EG Engage ECAM

"EP" Specify ECAM table intervals & staring point

"ET” ECAM table

“EM” Specify ECAM cycle

“EQ” Disengage ECAM

“MM” Master Modulus

EC0 Set ECAM index to 0

ET 200,400 Set first ECAM table entries to 200,400

ET 400,800 Set second ECAM table entries to 400,800
99

LEGEND-MC User’s Manual
ED (Edit Mode)
[General]

DESCRIPTION:

Using Yaskawa YTerm Software or any other terminal emulator: The ED command puts the controller into
the Edit subsystem. In the Edit subsystem, programs can be created, changed or destroyed. The commands
in the Edit subsystem are:

<cntrl>D Deletes a line

<cntrl>I Inserts a line before the current one

<cntrl>P Displays the previous line

<cntrl>Q Exits the Edit subsystem

<return> Saves a line

Because the download time for a complete program is usually very short, we recommend all editing be
performed by Yaskawa’s YTerm software. This command is primarily documented for it’s usefulness when
a command error occurs. _ED indicates the line that had the error.

ARGUMENTS: ED n where

n specifies the line number to begin editing. The default line number is the last line of program space with
commands.

USAGE:

OPERAND USAGE:

_ED Contains the line number of the last line to have an error. Very useful in tracing field problems.

_ED1 Offending thread

_ED2 Used to re-execute the command that had error

_ED3 Used to execute after offending command

EXAMPLES:

While Moving No Default Value n/a

 In a Program No Default Format n/a

Command Line Yes

Can be Interrogated No

Used as an Operand Yes Distributed Control No, Local

000 #START

001 PR 2000

002 BG

003 SLKJ Bad line

004 EN

005 #CMDERR Routine which occurs upon a command error
100

LEGEND-MC User’s Manual
NOTE: Remember to quit the Edit Mode prior to executing or listing a program.

006 V=_ED

007 MG "An error has occurred" {n}

008 MG "In line", V{F3.0}

009 ST

010 ZS0

011 EN
101

LEGEND-MC User’s Manual
EG (ECAM Engage)
[Motion]

DESCRIPTION:

The EG command engages an ECAM operation at a specified position of the master encoder. If a value is
specified outside of the master’s range, the slave will engage immediately. Once a slave motor is engaged,
its position is redefined to fit within the cycle.

ARGUMENTS: EG n where

n is the master position at which the slave axis must be engaged.

“?” returns 1 if specified axis is engaged and 0 if disengaged

USAGE:

OPERAND USAGE:

_EGn contains ECAM status where n is an axis letter. 0 = axis is not engaged, 1 = axis is engaged.

RELATED COMMANDS:

EXAMPLES:

NOTE: This command is not a trippoint. This command will not hold the execution of the program
flow. If the execution needs to be held until master position is reached, use MF or MR command.

While Moving Yes Minimum value -2147483648

 In a Program Yes Maximum value 2147483647

Command Line Yes Default Value n/a

Can be Interrogated No Default Format n/a

Used as an Operand Yes Distributed Control Specific Axis

“EB” Enable Ecam

”EQ” Ecam quit

EG 700 Engages slave at master position 700.

B = _EG Return the status of the axis, 1 if engaged
102

LEGEND-MC User’s Manual
ELSE
[Program Flow]

DESCRIPTION:

The ELSE command is an optional part of an IF conditional statement. The ELSE command must occur
after an IF command and it has no arguments. It allows for the execution of a command only when the
argument of the IF command evaluates False. If the argument of the IF command evaluates false, the
controller will skip commands until the ELSE command. If the argument for the IF command evaluates
true, the controller will execute the commands between the IF and ELSE command.

ARGUMENTS: none

USAGE:

RELATED COMMANDS:

EXAMPLES:

While Moving Yes Default Value ---

In a Program Yes Default Format ---

Command Line No Distributed Control No, Local

"ENDIF" End of IF conditional Statement

IF (@IN[1]=0) IF conditional statement based on input 1

IF (@IN[2]=0) 2nd IF conditional statement executed if 1st IF
conditional true

MG "INPUT 1 AND INPUT 2 ARE
ACTIVE"

Message to be executed if 2nd IF conditional is
true

ELSE ELSE command for 2nd IF conditional
statement

MG "ONLY INPUT 1 IS ACTIVE Message to be executed if 2nd IF conditional is
false

ENDIF End of 2nd conditional statement

ELSE ELSE command for 1st IF conditional
statement

MG"ONLY INPUT 2 IS ACTIVE" Message to be executed if 1st IF conditional
statement

ENDIF End of 1st conditional statement
103

LEGEND-MC User’s Manual
EM (ECAM Cycle)
[Setting]

DESCRIPTION:

The EM command is part of the ECAM mode. It is used to define the change in position over one complete
cycle of the slave. If a slave will return to its original position at the end of the cycle, the change is zero. If
the change is negative, specify the absolute value.

ARGUMENTS: EM n where

n is the net change in the slave axis.

USAGE:

OPERAND USAGE:

_EMn contains the cam cycle of the slave where n is an axis letter.

RELATED COMMANDS:

EXAMPLES:

While Moving Yes Minimum n parameter -2147483648

In a Program Yes Maximum n parameter 2147483647

Command Line Yes Default Value 0

Can be Interrogated No Default Format ---

Used as an Operand Yes Distributed Control Use SA

"EB" Enable Ecam

"EP" CAM table intervals & starting point

"ET" Electronic CAM table

“MM” Master Modulus

EM 2000 Define the net change in the slave to be 2000.

V = _EM Return slave’s cam cycle distance
104

LEGEND-MC User’s Manual
EN (End)
[Program Flow]

DESCRIPTION:

The EN command is used to designate the end of a program or subroutine. If a subroutine was called by the
JS command, the EN command ends the subroutine and returns program flow to the point just after the JS
command.

The EN command is also used to end the automatic subroutines #MCTIME and #CMDERR.

ARGUMENTS: none

NOTE: Use the RE command to return from the interrupt handling subroutines #LIMSWI and
#POSERR. Use the RI command to return from the #ININT subroutine.

USAGE:

RELATED COMMANDS:

EXAMPLES:

NOTE: Instead of EN, use the RE command to end the error subroutine and limit subroutine. Use
the RI command to end the input interrupt) subroutine.

While Moving Yes Default Value n/a

In a Program Yes Default Format n/a

Command Line No

Can be Interrogated No

Used as an Operand No Distributed Control No, Local

"RE" Return from error subroutine

"RI" Return from interrupt subroutine

#A Program A

PR 500 Move X axis forward 500 counts

BGX Move X axis forward 1000 counts

AMX Pause the program until the X axis completes the motion

PR 1000 Set another Position Relative move

BGX Begin motion

EN End of Program
105

LEGEND-MC User’s Manual
ENDIF
[Program Flow]

DESCRIPTION:

The ENDIF command is used to designate the end of an IF conditional statement. An IF conditional
statement is formed by the combination of an IF and ENDIF command. An ENDIF command must always
be executed for every IF command that has been executed. It is recommended that the user not include jump
commands inside IF conditional statements since this causes re-direction of command execution. In this
case, the command interpreter may not execute an ENDIF command.

ARGUMENTS: ENDIF

USAGE:

RELATED COMMANDS:

EXAMPLES:

While Moving Yes Default Value n/a

In a Program Yes Default Format n/a

Command Line No Distributed Control No, Local

"ELSE" Optional command to be used only after IF command

"JP Jump command

"JS" Jump to subroutine command

IF (@IN[1]=0) IF conditional statement based on input 1

"MG " INPUT 1 IS ACTIVE Message to be executed if “IF” conditional is true

ENDIF End of conditional statement
106

LEGEND-MC User’s Manual
EO (Echo)
[Setting]

DESCRIPTION:

The EO command turns the echo on or off. If the echo is off, characters input to the serial port or Ethernet
will not be echoed back.

ARGUMENTS: EO n where

n=0 or 1. 0 turns echo off, 1 turns echo on.

USAGE:

EXAMPLES:

While Moving Yes Default Value 1

In a Program Yes Default Format 1

Command Line Yes

Can be Interrogated No

Used as an Operand No Distributed Control Use SA

EO 0 Turns echo off

EO 1 Turns echo on
107

LEGEND-MC User’s Manual
EP (ECam Table Intervals and Start Point)
[Setting]

DESCRIPTION:

The EP command defines the ECAM table intervals and offset. The offset is the master position where the
first ECAM table entry will synchronize. The interval is the difference of the master position between any
two consecutive table entries. This command effectively defines the size of the ECAM table. The parameter
m is the interval and n is the starting point. Up to 257 points may be specified using the ET command.

ARGUMENTS: EP m,n where

m, n are signed integers

USAGE:

OPERAND USAGE:

_EP contains the value of the interval m.

RELATED COMMANDS:

EXAMPLES:

While Moving Yes Minimum m value 1

In a Program Yes Minimum m value 32767

Command Line Yes Minimum n value -2147483648

Can be Interrogated Yes Minimum n value 2147483647

Used as an Operand Yes (m only) Distributed Control Use SA

"EB" Enable Ecam

"EG" Engage Ecam

"EM" Specify Ecam Cycle

"EQ" Ecam quit

“MM” Master Modulus

"ET" Electronic CAM table

EP 20,100 Sets the cam master points to 100,120,140 . . .

D = _EP Returns interval (m)
108

LEGEND-MC User’s Manual
EQ (ECam Quit (Disengage))
[Motion]

DESCRIPTION:

The EQ command disengages an electronic cam slave axis at the specified master position. If a value is
specified outside of the master’s range, the slave will disengage immediately.

ARGUMENTS: EQ n where

n is the master position at which the axis is to be disengaged.

“?” contains a 1 if engage command issued and slave is waiting to engage, 2 if disengage command issued
and slave is waiting to disengage, and 0 if ECAM engaged or disengaged.

USAGE:

OPERAND USAGE:

_EQn contains 1 if engage command is issued and slave is waiting to engage, 2 if disengage command is
issued and slave is waiting to disengage, and 0 if ECAM engaged or disengaged.

RELATED COMMANDS:

EXAMPLES:

NOTE: This command is not a trippoint. This command will not hold the execution of the program
flow. If the execution needs to be held until master position is reached, use MF or MR command.

While Moving Yes Minimum value -2147483647

In a Program Yes Maximum value 2147483648

Command Line Yes Default Value --

Can be Interrogated Yes Default Format --

Used as an Operand Yes Distributed Control Specific Axis

"EB" Enable Ecam

"EG" Engage Ecam

"EM" Specify Ecam Cycle

"EP" CAM table intervals & starting point

"ET" Electronic CAM table

EQ 300 Disengages the motor at master position 300.
109

LEGEND-MC User’s Manual
ER (Error Limit)
[Setting]

DESCRIPTION:

The ER command sets the magnitude of the position error that will trigger an error condition. When the
limit is exceeded, the Error LED will illuminate. If the Off-On-Error (OE1) command is active, the
amplifier will be disabled. The units of ER are quadrature counts. An ER value of 0 will disable the error
function, meaning that a #POSERR in the program will not execute, the red alarm LED will not illuminate
for excessive following error, and the motor will not be disabled if OE is set.

ARGUMENTS: ER x, y, z, w or ERX=x or ER a, b, c, d, e, f, g, h where

x, y z, w, or a, b, c, d, e, f, g, h are unsigned integers

“?” returns the value of the ERror limit.

USAGE:

OPERAND USAGE:

_ERn contains the value of the ERror limit where n is an axis letter.

RELATED COMMANDS:

EXAMPLES:

NOTE: The error limit specified by ER should be high enough as not to be reached during normal operation. Examples of
exceeding the error limit would be a mechanical jam, or a fault in a system component such as encoder or amplifier.

While Moving Yes Minimum Value 0

In a Program Yes Maximum Value 32767

Command Line Yes Default Value 16384

Can be Interrogated Yes Default Format Position Format

Used as an Operand Yes Distributed Control Specific Axis

OE Off on Error

#POSERR Automatic Error Subroutine

ER 200 Set the error limit to 200

ER ? Return value

00200

V1=_ER Assigns V1 value of ER

V1= Returns V1

00200
110

LEGEND-MC User’s Manual
ET (ECam Table)
 [Setting]

DESCRIPTION:

The ET command sets the ECAM table entries for the slave axis. The values of the master are not required.
The slave entry (n) is the position of the slave when the master is at the point (n ∗ i) + o, where i is the
interval and o is the offset as determined by the EP command.

ARGUMENTS: ET [n] = m where

n is an integer.

m is an integer.

USAGE:

RELATED COMMANDS:

EXAMPLES:

While Moving Yes Minimum n Value 0

In a Program Yes Maximum n Value 256

Command Line Yes Default n Value n/a

Can be Interrogated No Minimum m Value -2147438648

Used as an Operand No Maximum m Value 2147438647

Default m Value n/a

Distributed Control Use SA

"EB" Enable Ecam

"EG" Engage Ecam

"EM" Specify Ecam Cycle

"EP" Specify Ecam intervals and starting point

"EQ" Ecam quit

“MM” Master Modulus

ET [7] = 1000 Specifies the position of the slave that must be
synchronized with the eighth increment of the
master.
111

LEGEND-MC User’s Manual
FA (Acceleration Feedforward)
[Setting]

DESCRIPTION:

The FA command sets the acceleration feedforward coefficient, or returns the previously set value. This
coefficient, when scaled by the acceleration, adds a torque bias voltage during the acceleration phase and
subtracts the bias during the deceleration phase of a motion.

Acceleration Feedforward Bias = FA ⋅ AC ⋅ 1.5 ⋅ 10-7

Deceleration Feedforward Bias = FA ⋅ DC ⋅ 1.5 ⋅ 10-7

The Feedforward Bias product is limited to 10 Volts. FA will only be operational during independent
moves, not gearing, camming or interpolation.

ARGUMENTS: FA x, y, z, w or FAX=x or FA a, b, c, d, e, f, g, h where

x, y z, w, or a, b, c, d, e, f, g, h are unsigned numbers

FA has a resolution of .25

USAGE:

OPERAND USAGE:

_FAn contains the value of the feedforward acceleration coefficient where n is an axis letter.

RELATED COMMANDS:

EXAMPLES:

NOTE: If the feedforward coefficient is changed during a move, then the change will not take effect
until the next move.

While Moving Yes Minimum Value 0

In a Program Yes Maximum Value 8191

Command Line Yes Default Value 0

Can be Interrogated Yes Default Format 4.0

Used as an Operand Yes Distributed Control Specific Axis

"FV" Velocity feedforward

AC 500000 Set acceleration

FA 10 Set feedforward coefficient to 10

FA ? The effective bias will be 0.75V (10 * 500000 * 1.5 * 10-7)

010 Return value
112

LEGEND-MC User’s Manual
FE (Find Edge)
[Motion]

DESCRIPTION:

The FE command moves a motor until a transition is seen on the homing input for the associated axis. The
direction of motion depends on the initial state of the homing input (use the CN command to configure the
polarity of the home input). Once the transition is detected, the motor decelerates to a stop.

This command is useful for creating your own homing sequences. See the example section.

ARGUMENTS: FE XYZW or ABCDEFGH

USAGE:

RELATED COMMANDS:

EXAMPLES:

NOTE: Find Edge only searches for a change in state on the Home Input. Use FI (Find Index) to search for the encoder
“C” channel. Remember to specify BG after each of these commands. Use HM (Home) to search for both the Home input
and the Index.

While Moving No Default Value ---

In a Program Yes Default Format ---

Command Line Yes

Can be Interrogated No

Used as an Operand No Distributed Control Specific Axis

"FI" Find Index

"HM" Home

"BG" Begin

"AC" Acceleration Rate

"DC" Deceleration Rate

"SP" Speed for search

FE Set find edge mode

BG Begin
113

LEGEND-MC User’s Manual
FI (Find Index)
[Motion]

DESCRIPTION:

The FI and BG commands move the motor until an encoder index pulse, or “C” channel, is detected. The
controller looks for a transition from low to high. When the transition is detected, motion stops and the
position is defined as zero. To improve accuracy, the speed during the search should be specified as 1000
counts/s or less. The FI command is useful in custom homing sequences. The direction of motion is
specified by the sign of the JG command.

ARGUMENTS: FI XYZW or ABCDEFGH
USAGE:

RELATED COMMANDS:

EXAMPLES:

NOTE: Find Index only searches for a change in state on the Index. Use FE to search for the Home input. Use HM (Home)
to search for both the Home input and the Index. Remember to specify BG after each of these commands.

While Moving No Default Value ---

In a Program Yes Default Format ---

Command Line Yes

Can be Interrogated No

Used as an Operand No Distributed Control Specific Axis

"FE" Find Edge

"HM" Home

"BG" Begin

"AC" Acceleration Rate

"DC" Deceleration Rate

"JG" Speed for search

#HOME Home Routine

JG 500 Set speed and forward direction

FI Find index

BG Begin motion

AM After motion

MG "FOUND INDEX"

EN
114

LEGEND-MC User’s Manual
FL (Forward Limit)
[Setting]

DESCRIPTION:

The FL command sets the forward software position limit. If this limit is exceeded during commanded
motion, the motor will decelerate to a stop. Forward motion beyond this limit is not permitted. The forward
limit is activated at position n + 1. The forward limit is disabled at position 2147483647. The units are in
counts.

When the reverse software limit is activated, the automatic subroutine #LIMSWI will be executed if it is
included in the program and the program is executing. See section on Automatic Subroutines.

ARGUMENTS: FL x, y, z, w or FLX=x or FL a, b, c, d, e, f, g, h where

x, y z, w, or a, b, c, d, e, f, g, h are unsigned numbers

USAGE:

OPERAND USAGE:

_FLn contains the value of the forward software limit where n is an axis letter.

RELATED COMMANDS:

EXAMPLES:

While Moving Yes Minimum Value -2147483648

In a Program Yes Maximum Value +2147483647

Command Line Yes Default Value 2147483647

Can be Interrogated Yes Default Format Position Format

Used as an Operand Yes Distributed Control Specific Axis

"BL" Reverse Limit

#TEST Test Program

AC 1000000 Acceleration Rate

DC 1000000 Deceleration Rate

FL 15000 Forward Limit

JG 5000 Jog Forward

BGX Begin

AMX After Motion

TPX Tell Position

EN End
115

LEGEND-MC User’s Manual
@FRAC (Fraction)
[Function]

DESCRIPTION:

@FRAC returns only the fractional portion of a number or variable given in square brackets. Note that the
@FRAC command is a function, which means that it does not follow the convention of the commands,
and does not require the underscore when used as an operand.

ARGUMENTS: @FRAC [n] where

n is a number
USAGE:

EXAMPLES:

While Moving Yes Minimum n value -2147483647.9999

In a Program Yes Maximum n value 2147483647.9999

Not in a program Yes Default Value ---

Can be Interrogated No Default Format ---

Used as an Operand Yes Distributed Control No, Local

#TEST Program TEST

VAR1=123.456 Set variable

MG @FRAC[VAR1] Display only the fractional portion of VAR1

VAR2=@FRAC[VAR1]+.5 Perform calculation

EN End of program
116

LEGEND-MC User’s Manual
FV (Velocity Feedforward)
[Setting]

DESCRIPTION:

The FV command sets the velocity feedforward coefficient, or returns the previously set value. This
coefficient generates an output bias signal in proportion to the commanded velocity.

Velocity feedforward bias = 1.22 ⋅ 10-6 ⋅ FV ⋅ Velocity [in ct/s].

For example, if FV=10 and the velocity is 200,000 count/s, the velocity feedforward bias equals 2.44 volts.

ARGUMENTS: FV x, y, z, w or FVx=x or FV a, b, c, d, e, f, g, h where

x, y, z, w, or a ,b, c, d, e, f, g, h are unsigned numbers

USAGE:

OPERAND USAGE:

_FV contains the velocity feedforward coefficient where n is an axis letter.

RELATED COMMANDS:

EXAMPLES:

While Moving Yes Minimum Value 0

In a Program Yes Maximum Value 8192

Command Line Yes Default Value 0

Can be Interrogated Yes Default Format n/a

Used as an Operand Yes Distributed Control Specific Axis

"FA" Acceleration feedforward

FV 10 Set feedforward coefficients to 10

JG 30000 This speed produces 0.366 volts of torque
offset (1.22 X 10-6 X 10 X 30000).

FV ? Return the value

010
117

LEGEND-MC User’s Manual
GA (Master Axis for Gearing)
[Setting]

DESCRIPTION:

The GA command specifies the master axis for electronic gearing.

The master axis is the auxiliary encoder on the LEGEND-MC. The slave ratio is specified with the GR
command and gearing is turned off by the command GR0.

ARGUMENTS: GADX

USAGE:

RELATED COMMANDS:

EXAMPLES:

While Moving No Default Value ---

In a Program Yes Default Format ---

Command Line Yes Distributed Control Use SA

"GR" Gear Ratio

#GEAR Gear program

GADX Specify auxiliary encoder axis as master

GR -2.5 Specify X ratio
118

LEGEND-MC User’s Manual
GR (Gear Ratio)
[Motion]

DESCRIPTION:

GR specifies the Gear Ratio for the slave axis in electronic gearing mode. The master axis for the
LEGEND-MC is specified with the GA command. Gear ratio may range between +/-127.9999. The slave
axis will be geared to the actual position of the master. The master can go in both directions. GR 0 disables
gearing. If a limit switch is hit during gearing, then gearing is automatically disabled.

ARGUMENTS: GR n where

n is a signed number.

0 disables gearing

USAGE:

OPERAND USAGE:

_GRn contains the value of the gear ratio where n is an axis letter.

EXAMPLES:

While Moving Yes Minimum Value -127.9999

In a Program Yes Maximum Value 127.9999

Command Line Yes Default Value 0

Can be Interrogated Yes Default Format 3.4

Used as an Operand Yes Distributed Control Specific Axis

#GEAR

GADX

GR .25 Specify gear ratio

GRY=2.5 Specify that the Y axis will gear to the
auxiliary encoder at a rate of 2.5 (assuming a
distributed control system is configured)

EN End program
119

LEGEND-MC User’s Manual
HC (Handle Configuration)
 [Configuration]
DESCRIPTION:

The HC command performs all the operations of IH, NA and the QW command for a simplified connection
method.

The command is executed in the master controller and addresses all slaves. The slaves must be at addresses
of the (master IP address + (2*SlaveNum)). The master opens handles to the slaves, and initiates the QW
packets.

The IP address for the master must be established with the IA command prior to issuing the HC command.

The controller requires firmware version 1.0c or greater to use the HC command.

This command is only for connecting to SMC slaves. It can only be executed once per power on session.

Include a delay of about 5 seconds to allow a sufficient time for all network devices to power up
and be ready for network communication. Devices such as an Ethernet switch take some time at
power up to discover the network before they allow communication. If _HC=0 after issuing the
command, the network conditions will not allow communication.

ARGUMENTS: HC a,b,c where

HC? returns the present setting of the HC command.

NOTE: If the c parameter is 1, then only 1 handle is opened for each slave.
If the c parameter is 2 or 3, then two handles are opened for each slave.

*NOTE: Yaskawa recommends that the c parameter is set to 3 for the most efficient use of the network
and processing time. With parameter “c” set to 3, the outbound master commands are TCP/IP
protocol, and the slave update packets that are sent at interval “b” use the UDP/IP protocol,
which does not require an acknowledgement.

USAGE:

NOTE: Command causes configuration to be sent to slaves once.

OPERAND USAGE:

_HC contains a 0 if the Handle Configuration failed or has not been issued.

contains a 1 if the Handle Configuration is in progress.

contains a 2 if the Handle Configuration has completed successfully.

Description Min Max
a Total number of axes in the system 1 8
b Slave update rate in milliseconds 10 20000
c Communication protocol 1=UDP 2=TCP 3=TCP*

While Moving Yes Default Value n/a

In a Program Yes Default Format ---

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes Distributed Control No, Local
120

LEGEND-MC User’s Manual
RELATED COMMANDS:

EXAMPLES:

"CH" Configure Handles

"IA" Internet Address

"IH" Internet Handle

“NA” Number of Axes

“QW” Slave Data Update

HC 2,10,2 Set two axes, 10mSec Update, TCP

#WTHC Label

JP #WTHC,_HC<>2 Jump to label if HC not complete

MG “Connected.” Message
121

LEGEND-MC User’s Manual
HM (Home)
[Motion]

DESCRIPTION:

The HM command performs a three-stage homing sequence.

The first stage is the motor moving at the user programmed speed until detecting a transition on the Home
input. The direction for this first stage is determined by the initial state of the Home input. Once the Home
input changes, the motor decelerates to a stop. The state of the Home input can be configured using the CN
command.

The second stage consists of the motor changing directions and slowly approaching the transition again.
When the transition is detected, the motor is stopped instantaneously.

The third stage consists of the motor slowly moving forward until it detects an index pulse from the encoder.
It stops at this point and defines it as position 0.

ARGUMENTS: HM XYZW or ABCDEFGH

USAGE:

OPERAND USAGE:

_HMn contains the state of the Home input. Regardless of the limit switch polarity, where n is an axis letter,
0 always means the home input is active, 1 means inactive.

RELATED COMMANDS:

EXAMPLES:

NOTE: You can customize homing sequence by using the FE (Find Home Sensor only) and FI (Find Index only) com-
mands.

While Moving No Default Value ---

In a Program Yes Default Format ---

Command Line Yes

Can be Interrogated No

Used as an Operand Yes Distributed Control Specific Axis

"CN" Configure Home

"FI" Find Index Only

"FE" Find Home Only

HM Set Homing Mode

BG Begin Homing
122

LEGEND-MC User’s Manual
HR (Handle Restore)
[Configuration]

DESCRIPTION:

The HR command is used to enable the automatic restoration of handles that have closed during distributed
control communications. Once enabled with the HC command, handles that have been assigned as data or
communications channels for distributed control are monitored by the master. If a handle closes, attempts
are made to re-establish connection and restore communications with the handle. This command is
executed in the master as it controls the handle assignments and monitoring of those handles.

Handles must be connected using the simplified HC command for the HR function to operate. This
command is always set to “disabled” at power up. Use HR1 in the program in your subroutine.

ARGUMENTS: HRn where

n = 0 to disable automatic Handle Restore.

n = 1 to enable automatic Handle Restore.

HR? returns the present setting of the HR command.

USAGE:

RELATED COMMANDS:

EXAMPLES:

While Moving Yes Default Value 0

In a Program Yes Default Format n/a

Command Line Yes

Can be Interrogated Yes

Used as an Operand No Distributed Control No, Local

"HC" Handle Connect

“IH” Internet Handle
123

LEGEND-MC User’s Manual
HS (Handle Switch)
 [Configuration]
DESCRIPTION:

The HS command is used to switch the handle assignments between two handles. Handles are assigned by
the controller when the handles are opened with the HC command, or are assigned explicitly with the IH
command. Should those assignments need modifications, the HS command allows the handles to be
reassigned. This command is very useful if the program uses commands such as SB, CB, MB, and SA which
imply that a specific handle is to be used.

ARGUMENTS: HS a=b where

a = the first handle of the switch (A - P)

b = the second handle of the switch (A - P)

USAGE:

RELATED COMMANDS:

EXAMPLES:

This example demonstrates a master controller, M2, searching for other controllers on each handle and
forcing them to communicate at a specific handle. This is necessary when using the @IN (Input), SB (Set
Bit), CB (Clear Bit), SA (Send Command) or MB (Modbus) commands, because they reference specific
handles.

The Jump condition logic below ((_IHA0+4)<>_IA)|(_IHA2<>-2) is basically running the SH (Servo
Here) command on the given line if the IP address is not equal to the controller own IP address + 4 and if
the connection type is not TCP/IP.

While Moving Yes Default Value n/a

In a Program Yes Default Format n/a

Command Line Yes

Can be Interrogated No

Used as an Operand No Distributed Control No, Local

"HC" Handle Connect

“HR” Handle Restore

“IH” Internet Handle

HSC=D Connection for handle C is assigned to handle D. Connection for
handle D is assigned to handle C.
124

LEGEND-MC User’s Manual
HW (Handle Wait)
[Configuration]

DESCRIPTION:

This command is used to set the master to wait for acknowledgements from the slaves for each command
sent. If an error is generated on the slave, the master will treat it as a command error of it’s own. If this com-
mand is disabled, the master will assume that the slaves were able to perform the commands and proceed
without error.

If an error is generated on a slave while in the HW1 mode, the master will respond with a “?”. Issuing TC to
the master will respond with the error code from the slave. Also, issuing TCA through TCP will respond with
the text of the error from the slave on the specified handle.

_TCA through _TCP will respond with the error code from the slave on a specified handle.

This command is always set to “disabled” at power up.

ARGUMENTS: HW n where

n = 0 Turns Handle Wait Off

n = 1 Turns Handle Wait On.

USAGE:

RELATED COMMANDS:

EXAMPLES:

While Moving Yes Default Value 0

In a Program Yes Default Format n/a

Command Line Yes

Can be Interrogated Yes

Used as an Operand No Distributed Control No, Local

"HC" Handle Configure

IA 192,168,3,125 Set controllers IP Address

HR1 Enable Automatic Handle Restore

HW1 Enable Handle Wait

HC 7,UPDATE,2 Connect to slaves using HC command
125

LEGEND-MC User’s Manual
HX (Halt Execution)
[Program Flow]

DESCRIPTION:

The HX command halts the execution of any of the programs that may be running independently via
multitasking. The parameter n specifies the program to be halted.

ARGUMENTS: HX n where

n is 0 to 3 to indicate the task number

USAGE:

OPERAND USAGE:

When used as an operand, _HX n contains the running status of thread n with:

0 Thread not running

1 Thread is running

2 Thread has stopped at trippoint

RELATED COMMANDS:

EXAMPLES: (assuming the file contains the label #A and # B)

While Moving Yes Default Value n/a

In a Program Yes Default Format n/a

Command Line Yes

Can be Interrogated No

Used as an Operand Yes Distributed Control No, Local

"XQ" Execute program

XQ #A Execute program #A, thread zero

XQ #B,2 Execute program #B, thread two

HX0 Halt thread zero

HX2 Halt thread two
126

LEGEND-MC User’s Manual
IA (Internet Address)
[Setting]

DESCRIPTION:

The IA command assigns the controller an IP address.

The IA command may also be used to specify the time out value. This is only applicable when using the
TCP/IP protocol.

The IA command can only be used via RS-232. Since it assigns an IP address to the controller,
communication with the controller via internet cannot be accomplished until after the address has been
assigned.

ARGUMENTS: IA ip0, ip1, ip2, ip3 or IA n or IA<t where

ip0, ip1, ip2, ip3 are 1 byte numbers separated by commas and represent the individual fields of the IP
address.

n is the IP address for the controller which is specified as an integer representing the signed 32 bit number
(two’s complement).

<t specifies the time in update samples between TCP retries.

>u specifies the multicast IP address where u is an integer between 0 and 63.

IA? will return the IP address of the controller

USAGE:

OPERAND USAGE:

_IA0 contains the IP address representing a 32 bit signed number (Two’s complement)

_IA1contains the value for t (retry time)

_IA2 contains the number of available handles

_IA3 contains the number of the handle using this operand where the number is 0 to 15. 0 represents handle
A, 1 handle B, etc.

_IA4 reports the last handle that had a TCP error.

RELATED COMMANDS:

EXAMPLES:

While Moving No Default Value n = 0, t=250

In a Program Yes Default Format ---

Command Line Yes Distributed Control No, Local

IH Internet Handle

IA 151, 12, 53, 89 Assigns the controller with the address
151.12.53.89

IA 2534159705 Assigns the controller with the address
151.12.53.89

IA < 500 Sets the timeout value to 500msec
127

LEGEND-MC User’s Manual
IF
 [Program Flow]
DESCRIPTION:

The IF command is used in conjunction with an ENDIF command to form an IF conditional statement. The
arguments are one or more conditional statements. If the conditional statement(s) evaluates true, the
command interpreter will continue executing commands which follow the IF command. If the conditional
statement evaluates false, the controller will ignore commands until the associated ENDIF command OR an
ELSE command occurs in the program. The conditional statements MUST be enclosed on parentheses for
the expression to be evaluated correctly. See the example below.

ARGUMENTS: IF condition where

Conditions are tested with the following logical operators:

USAGE:

RELATED COMMANDS:

EXAMPLES:

< less than >= greater than or equal to
> greater than <> not equal
= equal to | logical OR (pipe symbol)
<= less than or equal to & logical AND

While Moving Yes Default Value ---

In a Program Yes Default Format ---

Command Line No Distributed Control No, Local

"ELSE" Optional command used only after IF command

"ENDIF" End of IF conditional Statement

IF (_TEX<1000) IF conditional statement based on X motor position

MG "Motor within 1000 counts of zero" Message to be executed if “IF” conditional
statement

ENDIF End of IF conditional statement

IF ((TEMP=126) | (TEMP=123))

JS # RELEASE

JS # ASSIGN

JS # CONNECT

ENDIF
128

LEGEND-MC User’s Manual
IH (Internet Handle)
[Setting]

DESCRIPTION:

The IH command is used when the LEGEND-MC is operated as a network master. This command opens a
handle and connects to a slave.

Each controller may have 16 handles open at any given time. They are designated by the letters A through
P. To open a handle, the user must specify:

The IP address of the slave

The type of session: TCP/IP or UDP/IP

The port number of the slave. This number isn’t necessary if the slave device doesn’t
require a specific port value. If not specified, the controller specifies the port value as
502.

ARGUMENTS: IHh= ip0, ip1, ip2, ip3 <p > q or IHh=n <p > q orIHh= >r where

OPERAND USAGE:

_IHh0 contains the IP address as a 32 bit number

_IHh1 contains the slave port number

_IHh2 contains a 0 if the handle is free

contains a 1 if it is for a UDP slave

contains a 2 if it is for a TCP slave

contains a -1 if it is for a UDP master

contains a -2 if it is for a TCP master

contains a -5 if attempting to connect by UDP

contains a -6 if attempting to connect by TCP

_IHh3 contains a 0 if the ARP was successful

contains a 1 if it has failed or is still in progress.

Argument Minimum Maximum Note

h A P Internet handle

ip0 - ip3 0 255 Four bytes of IP address separated by
commas

n -2147483648 2147483647 32 bit address alternative to ip0 - ip3

S=>C -1 (UDP) -2 (TCP) Close the handle that sent the command

T=>C -1 (UDP) -2 (TCP) Close handles except the one sending the
command

<p 0 65535 Specifies the port number of the slave,
not required for opening a handle

>q 0 2 Set connection type; 0=none; 1=UDP;
2=TCP

>r -1 (UDP) -2 (TCP) Terminate connection, and handle to be
freed

? Returns the IP address as four 1 byte
numbers
129

LEGEND-MC User’s Manual
_IHh4 contains a 1 if the SA command is waiting for acknowledgement from a slave

contains a 2 if the SA command received a colon

contains a 3 if the SA command received a question mark

contains a 4 if the SA command timed out

USAGE:

RELATED COMMANDS:

EXAMPLES:

NOTE: When the IH command is given, the controller initializes an ARP on the slave device
before opening a handle. This operation can cause a small time delay before the controller
responds.

NOTE: The HC command is recommended over the IH command for establishing a connection
with slave controllers because it is a simplified process.

While Moving Yes Default Value ----

In a Program Yes Default Format

Command Line Yes Distributed Control No, Local

“HC” Handle Connect

"IA" Internet Address

IHA=251,29,51,1 Open handle A at IP address 251.29.51.1

IHA= -2095238399 Open handle A at IP address 251.29.51.1

#WAITHC

JP #WAITHC, _IHA2 <>2
130

LEGEND-MC User’s Manual
II (Input Interrupt)
[Configuration]

DESCRIPTION:

The II command enables the interrupt function for the specified inputs. This function triggers when the
controller sees a logic change from high to low on a specified input.

If the #ININT special label is included in the program and any of the specified inputs go low during
program execution, the program will jump to the subroutine with label #ININT. Any trippoints set by the
program will be cleared but can be re-enabled by the proper termination of the interrupt subroutine using
RI.

To avoid returning to the main program on an interrupt, use the ZS command to zero the subroutine stack
and use the II command to re-enable the interrupt.

ARGUMENTS: II m,n,o,p are integers where

OPERAND USAGE:

_II will return the m parameter.

USAGE:

Argument Min Max Note Example Meaning

m 0 8 Zero disables the interrupts, otherwise,
specify the input number. If parameter n
will be used, the value of “m” specifies
the lowest input number to be used for the
input interrupt.

II 3 Input #3 will cause an interrupt
when it goes low.

n 2 7 Optional argument used with “m” to
specify a range of inputs. When the “n”
argument is omitted, only the input
specified by the “m” parameter will be
enabled.

II 2, 4 Input #2, Input #3, and Input #4
are enabled for interrupt.

o 1 127 This argument is an alternative to
specifying a range of inputs. Specify the
inputs that are enabled for interrupt in a
binary format. (If “m” and “n” are
specified, “o” will be ignored.)

II,, $0F Equivalent to binary 00001111,
inputs #1 through #4 will be
enabled for interrupt.

p 1 127 Specifies interrupts that should activate
with logic one. Specify the inputs that are
logic one in a binary format. This
argument logically ANDs with inputs
already specified in the above arguments.

II 1, 4,, 2 “p”equivalent is 00000010, so
only Input #2 (of #1 through #4)
will interrupt active high. 1,3,
and 4 will interrupt active low.

While Moving Yes Default Value n/a

In a Program Yes Default Format 3.0 (mask only)

Command Line No

Can be Interrogated Yes

Used as an Operand Yes Distributed Control No, Local
131

LEGEND-MC User’s Manual
RELATED COMMANDS:

EXAMPLES:

"RI" Return from Interrupt

#ININT Interrupt Subroutine Special label

"AI" Trippoint for input

#A Program A

II 7,,,64 Specify interrupt on input #7 going high
(0100 0000).

JG 5000 Specify jog speed

BG Begin motion

#LOOP; JP #LOOP Loop

EN End Program

#ININT Interrupt subroutine

ST; MG "INTERRUPT" Stop X, print message

AM After stopped

#CLEAR; JP#CLEAR,@IN[1]=0 Check for interrupt clear

BG Begin motion

RI Return to main program
132

LEGEND-MC User’s Manual
IL (Integrator Limit)
[Tuning]

DESCRIPTION:

The IL command limits the effect of the integrator function in the filter to a certain voltage. For example,
IL 2 limits the output of the integrator to the +/-2 Volt range. This is very effective in allowing higher KI
values without adding instability.

A negative parameter also freezes the effect of the integrator during a move. For example, IL -3 limits the
integrator output to +/-3V. If, at the start of motion, the integrator output is 1.6 Volts, that level will be
maintained through the move. Note, however, that the KD and KP terms remain active in any case.

ARGUMENTS: IL x, y, z, w or ILX=x or IL a, b, c, d, e, f, g, h where

x, y z, w, or a, b, c, d, e, f, g, h are unsigned integers

USAGE:

OPERAND USAGE:

_ILn contains the value of the integrator limit in volts where n is an axis letter.

RELATED COMMANDS:

EXAMPLES:

While Moving Yes Minimum Value -10

In a Program Yes Maximum Value 10

Command Line Yes Default Value 10 (disabled)

Can be Interrogated Yes Default Format 1.4

Used as an Operand Yes Distributed Control Specific Axis

"KI" Integrator

KI 2 Integrator constants

IL 3 Integrator limits

IL ? Returns the limit

3.0000
133

LEGEND-MC User’s Manual
IN (Input Variable)
[General]

DESCRIPTION:

The IN command allows a variable to be input from the serial port or Ethernet. An optional prompt message
can be displayed. The variable value must be followed by a carriage return. The entered value is assigned to
the specified variable name.

The IN command holds up execution of following commands in the program thread until a carriage return or
semicolon is entered. If no value is given prior to a semicolon or carriage return, the previous variable value
is kept. Input Interrupts, Error Interrupts and Limit Switch Interrupts will still be active.

ARGUMENTS: IN{P1} ”m” , n {So} where

"m" is the prompt message. May be letters, numbers, or symbols up to maximum line length and must be
placed in quotations.

n is the name of variable to store the new value in.

{P1} specifies the port, if omitted, the default port is assumed.

{So} specifies string data where o is the number of characters from 1 to 6

NOTE 1: The IN command defaults to {P1}, and must only be used with the serial port.
NOTE 2: IN command can only be used in thread 0.

USAGE:

EXAMPLES: Operator specifies material length in inches and speed in inches/sec (2 pitch lead screw, 2000 counts/rev
encoder).

While Moving Yes Default Value

In a Program Yes Default Format Position Format

Command Line No

Can be Interrogated No

Used as an Operand No Distributed Control No, Local

#A Program A

CI -1 Clear Input Buffer

IN "Enter Speed (in/sec)",V1 Prompt operator for speed

IN "Enter Length(in)",V2 Prompt for length

V3=V1*4000 Convert units to counts/sec

V4=V2*4000 Convert units to counts

SP V3 Speed command

PR V4 Position command

BGX;AMX Begin motion; Wait for motion complete

MG "MOVE DONE" Print Message

EN End Program
134

LEGEND-MC User’s Manual
@IN (Input)
[I/O]

DESCRIPTION:

@IN returns the status of the digital input number or variable given in square brackets. Note that the @IN
command is a function, which means that it does not follow the convention of the commands, and does
not require the underscore when used as an operand.
When using this command to access I/O on a slave controller in distributed control mode, use it with the handle for
outbound master commands. Do not use the handle which is for incoming slave update packets. For example, if a
slave is connected on handles E and F, reference the I/O for the slave on handle E.

ARGUMENTS: @IN [n] where

n is an integer corresponding to a specific output on the controller to be cleared (set to 0). The first output
on the controller is denoted as output 1. A LEGEND-MC controller has 4 digital outputs plus applicable I/
O connected by Modbus.

DISTRIBUTED CONTROL:

MODBUS:

NOTE: With Modbus devices, I/O points of the devices are calculated using the following formula:
n = (SlaveAddress*1000) + (HandleNum*1000) + ((Module-1)*4) + (Bitnum-1)

Slave Address is used when ModBus device has slave devices connected to it and specified as Addresses
0 to 255. Note that the use of slave devices for modbus are very rare and this number will usually be 0.

HandleNum is the handle specifier from A to P (1 - 16).

Module is the position of the module in the rack from 1 to 16.

BitNum is the I/O point in the module from 1 to 4.

USAGE:

EXAMPLES:

Handle Command Handle Command
A @IN[101] ~ @IN[104] I @IN[901] ~ @IN[904]
B @IN[201] ~ @IN[204] J @IN[1001] ~ @IN[1004]
C @IN[301] ~ @IN[304] K @IN[1101] ~ @IN[1104]
D @IN[401] ~ @IN[404] L @IN[1201] ~ @IN[1204]
E @IN[501] ~ @IN[504] M @IN[1301] ~ @IN[1304]
F @IN[601] ~ @IN[604] N @IN[1401] ~ @IN[1404]
G @IN[701] ~ @IN[704] O @IN[1501] ~ @IN[1504]
H @IN[801] ~ @IN[804] P @IN[1601] ~ @IN[1604]

While Moving Yes Minimum n value 1

In a Program Yes Maximum n value 8

Not in a program Yes Default Value ---

Can be Interrogated No Default Format ---

Used as an Operand Yes Distributed Control Offset, 100

#TEST Program TEST
VAR1=2 Set variable
MG @IN[VAR1] Display the status of digital input 2
VAR2=@IN[VAR1]+1 Perform calculation
135

LEGEND-MC User’s Manual
EN End of program
IF(@IN[604])
MG”Slave input 4 is ON”
ELSE
MG”Slave input 4 is OFF”
ENDIF
136

LEGEND-MC User’s Manual
@INT (Integer)
[Function]

DESCRIPTION:

@INT returns only the whole number part of a number or variable given in square brackets. Note that the
@INT command is a function, which means that it does not follow the convention of the commands, and
does not require the underscore when used as an operand.

ARGUMENTS: @INT [n] where

n is a number

USAGE:

EXAMPLES:

While Moving Yes Minimum n value -2147483648.9999

In a Program Yes Maximum n value 2147483648.9999

Not in a program Yes Default Value ---

Can be Interrogated No Default Format ---

Used as an Operand Yes Distributed Control No, Local

#TEST Program TEST

VAR1=123.456 Set variable

MG @INT[VAR1] Display only the whole number portion of
VAR1

VAR2=@INT[VAR1]+25 Perform calculation

EN End of program
137

LEGEND-MC User’s Manual
IP (Increment Position)
[Motion]

DESCRIPTION:

The IP command allows for an update in the commanded position while the motor is moving. This
command does not require a BG. The command has three effects depending on the motion being executed.
The units of this command are quadrature counts.

Case 1: Motor is standing still

An IP n command is equivalent to a PR n and BG command. The motor will move to the specified position
at the requested slew speed and acceleration.

Case 2: Motor is moving towards specified position

An IP n command will cause the motor to move to a new position target, which is the old target plus n. n
must be in the same direction as the existing motion (final target cannot be closer).

Case 3: Motor is in Jog Mode

An IP n command will cause the motor to instantly try to servo to a position n from the present
instantaneous position. The SP and AC parameters have no effect. This command is useful for making small
corrections when synchronizing 2 axes in which one of the axis' speed is indeterminate due to a variable
diameter pulley.

WARNING: When the motor is in jog mode, an IP will create an instantaneous position error. In this
mode, the IP should only be used to make small incremental position movements.

ARGUMENTS: IP x, y, z, w or IPX=x or IP a, b, c, d, e, f, g, h where

x, y z, w, or a, b, c, d, e, f, g, h are unsigned integers

USAGE:

EXAMPLES:

While Moving Yes Minimum Value -2147483648

In a Program Yes Maximum Value 2147483647

Command Line Yes Default Value n/a

Can be Interrogated Yes Default Format 10.0

Used as an Operand No Distributed Control Specific Axis

:IP 50 50 counts with set acceleration and speed

#CORRECT Label

AC 100000 Set acceleration

JG 10000;BG Jog at 10000 counts/sec rate

WT 1000 Wait 1000 msec

IP 10 Move the motor 10 counts instantaneously

ST Stop Motion
138

LEGEND-MC User’s Manual
IT (Independent Time Constant)
[Motion]

DESCRIPTION:

The IT command filters the acceleration and deceleration functions in independent moves of JG, PR, PA
type to produce a smooth velocity profile. The resulting profile, known as an S-curve, has continuous
acceleration and results in reduced mechanical vibrations. IT sets the bandwidth of the filter where 1 means
no filtering and 0.004 means maximum filtering. Note that the filtering results in longer motion time.

The use of IT will not effect the trippoints AR and AD. The trippoints AR and AD monitor the profile prior
to the IT filter and therefore can be satisfied before the actual distance has been reached if IT is NOT 1.

An IT value less then 1 will make the move longer. This can be compensated for by increasing the
acceleration and deceleration paraemters

ARGUMENTS: IT x, y, z, w or ITX=x or IT a, b, c, d, e, f, g, h where

n is a positive number with a resolution of 1/256

USAGE:

OPERAND USAGE:

_ITn will return the value of the independent time constant where n is an axis letter.

EXAMPLES:

While Moving Yes Minimum Value 0.004

In a Program Yes Maximum Value 1.000

Command Line Yes Default Value 1.0

Can be Interrogated Yes Default Format 1.4

Used as an Operand Yes Distributed Control Specific Axis

IT 0.8 Set independent time constants

IT ? Return independent time constant

0.8
139

LEGEND-MC User’s Manual
JG (Jog)
[Motion]

DESCRIPTION:

The JG command sets a speed in jog mode. The parameters following the JG set the slew speed and
direction of motion. Use of the question mark returns the previously entered value or default value. The
units of this are counts/second. The AC (acceleration) and DC (deceleration) commands work in this mode.

ARGUMENTS: JG x, y, z, w or JGX=x or JG a, b, c, d, e, f, g, h where

x, y z, w, or a, b, c, d, e, f, g, h are signed integers

USAGE:

OPERAND USAGE:

_JGn will return the absolute value of the jog speed in counts per second where n is an axis letter.

RELATED COMMANDS:

EXAMPLES:

While Moving Yes Minimum Value -12,000,000

In a Program Yes Maximum Value 12,000,000

Command Line Yes Default Value 25000

Can be Interrogated Yes Default Format Position Format

Used as an Operand Yes Distributed Control Specific Axis

"BG" Begin

"ST" Stop

"AC" Acceleration

"DC" Deceleration

"IP" Increment Position

"TV" Tell Velocity

JG 100 Set for jog mode with a slew speed of 100
counts/sec

BG Begin Motion

JG -2000 Change speed and direction.
140

LEGEND-MC User’s Manual
JP (Jump to Program Location)
[Program Flow]

DESCRIPTION:

The JP command causes a jump to a program location on a specified condition (optional). The program
location may be any label. The condition is a conditional statement which uses a logical operator such as
equal to or less than. A jump is executed if the specified condition is true.

Multiple conditions can be used in a single jump statement. Conditional statements are combined in pairs
using operands “&” and “|”. The “&” operand between two conditions requires both statements to be true
for the combined statement to be true. The ”|” operand between two conditions requires that one statement
be true for the combined statement to be true.

NOTE: Each condition must be in parenthesis for controller evaluation as a boolean expression.

ARGUMENTS: JP location, condition where

location is a program label

condition is a conditional statement using a logical operator

The logical operators are:

USAGE:

EXAMPLES:

NOTE: JP is similar to an IF, THEN command. Text to the right of the comma is the condition that must be met for a jump
to occur. The destination is the specified label before the comma.

< less than >= greater than or equal to
> greater than <> not equal
= equal to | logical OR (pipe symbol)

<= less than or equal to & logical AND

While Moving Yes Default Value n/a

In a Program Yes Default Format n/a

Command Line No

Can be Interrogated No

Used as an Operand No Distributed Control No, Local

JP #POS1, (V1<5) Jump to label #POS1 if variable V1 is less than 5

JP #A, (V7*V8=0) Jump to #A if V7 times V8 equals 0

JP #B Jump to #B (no condition)
141

LEGEND-MC User’s Manual
JS (Jump to Subroutine)
 [Program Flow]
DESCRIPTION:

The JS command will change the sequential order of execution of commands in a program. If the jump is
executed, the program will continue at the label specified by the destination parameter. The line number of
the JS command is saved and after the next EN command is encountered (End of subroutine), program
execution will continue with the instruction following the JS command. The JS command can be nested 16
deep.

Multiple conditions can be used in a single jump subroutine statement. The conditional statements are
combined in pairs using the operands “&” and “|”. The “&” operand between any two conditions requires
that both statements must be true for the combined statement to be true. The “|” operand between any two
conditions requires that only one statement be true for the combined statement to be true.

NOTE: Each condition must be placed in parenthesis for proper evaluation by the controller as a
boolean expression. Subroutines can be nested 16 deep in the standard controller.

ARGUMENTS: JS destination,condition where

destination is a line number or label

condition is a conditional statement using a logical operator

The logical operators are:

USAGE:

RELATED COMMANDS:

EXAMPLES:

< less than >= greater than or equal to
> greater than <> not equal
= equal to | logical OR (pipe symbol)

<= less than or equal to & logical AND

While Moving Yes Default Value ---

In a Program Yes Default Format ---

Command Line No

Can be Interrogated No

Used as an Operand No Distributed Control No, Local

"EN" End

JS #SQUARE, (V1<5) Jump to subroutine #SQUARE if V1 is less than 5

JS #LOOP, (V1<>0) Jump to #LOOP if V1 is not equal to 0

JS #A Jump to subroutine #A (no condition)
142

LEGEND-MC User’s Manual
KD (Derivative Constant)
[Tuning]

DESCRIPTION:

KD designates the derivative constant in the controller filter. The filter transfer function is

D(z) = 4 * KP + 4 * KD(z-1)/z + KIz/2 (z-1)

For further details on the filter see the section Theory of Operation.

ARGUMENTS: KD x, y, z, w or KDX=x or KD a, b, c, d, e, f, g, h where

x, y z, w, or a, b, c, d, e, f, g, h are unsigned integers

USAGE:

OPERAND USAGE:

_KDn contains the value of the derivative constant where n is an axis letter.

RELATED COMMANDS:

EXAMPLES

While Moving Yes Minimum Value 0

In a Program Yes Maximum Value 4095.875

Command Line Yes Default Value 10

Can be Interrogated Yes Default Format 4.2

Used as an Operand Yes Distributed Control Specific Axis

"KP" Proportional Constant

"KI" Integral

KD 100 Specify KD

KD ? Return KD

0100.00
143

LEGEND-MC User’s Manual
KI (Integrator)
[Tuning]

DESCRIPTION:

The KI command sets the integral gain of the control loop. It fits in the control equation as follows:

D(z) = 4 * KP + 4 * KD(z-1)/z + KI z/2(z-1)

The integrator term will reduce the position error at rest to zero.

ARGUMENTS: KI x, y, z, w or KIX=x or KI a, b, c, d, e, f, g, h where

x, y z, w, or a, b, c, d, e, f, g, h are unsigned integers

USAGE:

OPERAND USAGE:

_KIn contains the value of the integrator where n is an axis letter.

RELATED COMMANDS:

EXAMPLES:

While Moving Yes Minimum Value 0

In a Program Yes Maximum Value 2047.875

Command Line Yes Default Value 0

Can be Interrogated Yes Default Format 4.0

Used as an Operand Yes Distributed Control Specific Axis

"KP" Proportional Gain

"KD" Derivative

"IL" Integrator Limit

KI 12 Specify integral

KI ? Return value

0012
144

LEGEND-MC User’s Manual
KP (Proportional Constant)
[Tuning]

DESCRIPTION:

KP designates the proportional constant in the controller filter. The filter transfer function is

D(z) = 4 * KP + 4 * KD(z-1)/z + KI z/2(z-1)

For further details see the section Theory of Operation.

ARGUMENTS: KP x, y, z, w or KPX=x or KP a, b, c, d, e, f, g, h where

x, y z, w, or a, b, c, d, e, f, g, h are unsigned integers

USAGE:

OPERAND USAGE:

_KPn contains the value of the proportional constant where n is an axis letter.

RELATED COMMANDS:

While Moving Yes Minimum Value 0

In a Program Yes Maximum Value 1023.875

Command Line Yes Default Value 1

Can be Interrogated Yes Default Format 4.2

Used as an Operand Yes Distributed Control Specific Axis

"KP" Proportional Gain

"KI" Integral constant
145

LEGEND-MC User’s Manual
LA (List Arrays)
[General]

DESCRIPTION:

The LA command returns a list of all arrays in memory. The listing will be in alphabetical order. The size of
each array will be included next to each array name in square brackets.

ARGUMENTS: None

USAGE:

RELATED COMMANDS:

EXAMPLES:

While Moving Yes Default Value -

In a Program Yes Default Format -

Command Line Yes Distributed Control No, Local

"LL" List Labels

"LS" List Program

"LV" List Variable

: LA

CA [10]

LA [5]

NY [25]

VA [17]
146

LEGEND-MC User’s Manual
LC (Lock Controller)
[Configuration]

DESCRIPTION: LC

The (LC) Lock Controller command is used to prohibit the execution of certain commands from the
serial port by setting a security password. See the table below for a list of commands that are disabled in
the "Locked" mode. When this command is successfully executed, it automatically burns the new
configuration into the EEPROM.

ARGUMENTS: LC p,l

where p is the password as previously established with the "PW" command.

"l" is the Lock setting, 0=Unlock, 1=Lock commands (see table), 2=Lock commands and prohibit setting
any commands from the serial port.

USAGE:

OPERAND USAGE:

_LC will return the lock state of the controller, 0 = not locked, 1 = specific commands locked, 2 = All
commands locked including from serial port and ethernet port except the LC command.

RELATED COMMANDS:

COMMANDS DISABLED WHILE LOCKED = 1:

EXAMPLES:

While Moving Yes Default Value ---

In a Program No Default Format ---

Command Line Yes

Used as an Operand Yes

Can be Interrogated Yes Distributed Control No, Local

"PW" Password

BN (Burn Parameters) TR (Trace Mode)

BP (Burn Program) DL (Download)

BV (Burn Variables) LS (List Program)

UL (Upload) ED (Edit)

LC apple,2 Locks controller, assuming the valid password
is “apple.”

BN Burn command (invalid when locked)

? Receive question mark

TC1 Tell Code returns “Command not valid while
controller is locked.”
147

LEGEND-MC User’s Manual
LE (Linear Interpolation End)
[Motion]

DESCRIPTION: LE

Signifies the end of a linear interpolation sequence. It follow the last LI specification in a linear sequence.
The LE command signifies the controller issues commands to decelerate the motor to a stop.

ARGUMENTS:

n=? Returns the total vector move length in encoder counts for the coordinate system.

USAGE:

OPERAND USAGE:

_LE contains the total vector move length in encoder counts.

RELATED COMMANDS:

EXAMPLES:

While Moving Yes Default Value ---

In a Program Yes Default Format ---

Command Line Yes

Used as an Operand Yes

Can be Interrogated Yes Distributed Control No, Local

"LI" Linear Distance

"BGS" BGS - Begin Sequence

"LM" Linear Interpolation Mode

"VS" Vector Speed

"VA" Vector Acceleration

"VD" Vector Deceleration

"PF" Position Formatting

LM XY Specify linear interpolation mode for X and Y
axes

LI 100, 200 Specify linear distance

LE End linear move

BGS Begin sequence
148

LEGEND-MC User’s Manual
_LF* (Forward Limit)
[Status]

DESCRIPTION: _LF XYZW or LF ABCDEFGH

The _LF operand contains the state of the forward limit switch. A value of zero always indicates that the
limit is active, no matter what configuration the CN command is set to.

NOTE: This is not a command.

USAGE:

EXAMPLES:

While Moving Yes Default Value ---

In a Program Yes Default Format ---

Command Line Yes

Used as an Operand Yes

Can be Interrogated No Distributed Control Specific Axis

MG _LFX Display the status of the forward limit switch

JP#A,_LFX=0 Jump to label, #A, forward limit switch is
activated
149

LEGEND-MC User’s Manual
LI (Linear Interpolation)
[Motion]

DESCRIPTION:

The LI command specifies the incremental distance of travel for Linear Interpolation (LM) mode. LI
parameter are relative distances given with respect to the current axis positions. Up to 511 LI specifications
may be given ahead of the Begin Sequence (BGS) command. Additional LI commands may be sent during
motion when the controller sequence buffer frees additional spaces for new vector segments. The Linear
End (LE) command must be given after the last LI specification in a sequence, it causes deceleration to a
stop at the last LI command. It is the responsibility of the user to keep enough LI segments in the controller
sequence buffer to ensure continuous motion.

LM? returns the available spaces for LI segments that can be sent to the buffer. 511 returned means the
buffer is empty and 511 LI segments can be sent. A zero means the buffer is full and no additional segments
can be sent. The parameters o and p are optional and can be used to define the vector speed that is attached
to the motion segment.

Linear Interpolation is useful for making contoured or continuous move profiles.

NOTE: Linear mode can NOT be used on multiple axes controlled via ethernet.

ARGUMENTS: LI n, n <o> p or LIX=n where

USAGE:

RELATED COMMANDS:

Argument Min Max Note Example Meaning

n -8388607 8388607 The incremental move
distance.

LI 500 500 encoder count move on the
X axis.

o 0 12000000 Vector speed to be taken into
effect at the execution of this
segment.

LI 500 <40000 500 encoder count move on the
X axis. Change to a vector speed
of 40000 counts per second.

p 0 12000000 Vector speed to be taken into
effect at the end of this
segment.

LI 500 >40000 500 encoder count move on the
X axis. Change to a vector speed
of 40000 counts per second at
the end of the segment.

While Moving Yes Default Value -

In a Program Yes Default Format -

Command Line Yes Distributed Control No, Local

"LE" Linear End

"BGS" BGS - Begin Sequence

"LM" Linear Interpolation Mode

"CS" Clear Sequence

"VS" Vector Speed

"VA" Vector Acceleration

"VD" Vector Deceleration
150

LEGEND-MC User’s Manual
EXAMPLES:
LM X Specify Linear interpolation Mode for X axis

LI 1000 Specify linear distance

LE End linear move

BGS Begin sequence

AMS After Motion Sequence
151

LEGEND-MC User’s Manual
LL (List Labels)
[General]

DESCRIPTION:

The LL command returns a listing of all of the program labels in memory. The listing will be in alphabetical
order.

ARGUMENTS: None

USAGE:

RELATED COMMANDS:

EXAMPLES:

While Moving Yes Default Value ---

In a Program Yes Default Format ---

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes Distributed Control No, Local

"LV" List Variables

: LL

FIVE

FOUR

ONE

THREE

TWO
152

LEGEND-MC User’s Manual
LM (Linear Mode)
[Setting]

DESCRIPTION:

The LM command specifies the linear interpolation mode and specifies the axes for linear interpolation. LI
commands are used to specify the travel distances for linear interpolation. The LE command specifies the
end of the linear interpolation sequence. Several LI commands may be given as long as the controller
sequence buffer has room for additional segments. Once the LM command has been given, it does not need
to be given again unless the VM command has been used.

Only one axis can be used in interpolation mode. Axes connected in a distributed control system cannot be
coordinated over ethernet. The Linear mode feature is useful for specifying positions where the final end
target is not known at the time the move is begun.

ARGUMENTS: LM XYZW or ABCDEFGH

USAGE:

OPERAND USAGE:

_LMx contains the number of spaces available in the sequence buffer for the coordinate system.

RELATED COMMANDS:

EXAMPLES:

While Moving Yes Default Value ---

In a Program Yes Default Format ---

Command Line Yes

Used as an Operand Yes

Can be Interrogated Yes Distributed Control No, Local

"LE" Linear end

"LI" Linear Distance

"VA" Vector acceleration

"VS" Vector Speed

"VD" Vector deceleration

"CS" _CS - Sequence counter

LM XY Specify linear interpolation mode

VS 10000; VA 100000;VD 1000000 Specify vector speed, acceleration and deceleration

LI 100 Specify linear distance

LI 200 Specify linear distance

LE; BGS Last vector, then begin motion
153

LEGEND-MC User’s Manual
LO (Lockout)
 [Configuration]
DESCRIPTION:

The LO command is used to lock-out a particular handle or serial port with the master controller on a
distributed control system. This function ignores all data received to the master on the specified
communication channel.

ARGUMENTS: LO h,n where

h is the handle, A thru P, or the letter S for the serial port. This identifies the communication channel to be
locked out.

n = 1 or no argument to enable the lockout

n = -1 to remove the lockout

The lockout command is not burnable, and all locks will be cleared at power up.

USAGE:

OPERAND USAGE:

_LOh contains the state of the lockout for handle A - P or S.

The list continues, each handle is offset by $600.

RELATED COMMANDS:

EXAMPLES:

While Moving Yes Default Value n/a

In a Program Yes Default Format n/a

Command Line Yes Default n value 1

Can Be Interrogated Yes

Used as an Operand Yes Distributed Control No, Local

Handle Operand Usage Unlocked Value Locked Value

A MG _LOA{$10} 3200 3201

B MG _LOB{$10} 3800 3801

C MG _LOC{$10} 3E00 3E01

"CH" Connect to Internet Handles for slaves

"IH" Set Internet Handles

"NA" Set number of axes for distributed control system

"QW" Set slave data record update rate

"SA" Send command to slave

LOS Lockout information received from the serial port

WT10000 Wait 10 seconds

LOS,-1 Re-enable the serial port
154

LEGEND-MC User’s Manual
_LR* (Reverse Limit)
[Status]

DESCRIPTION: _LR XYZW or ABCDEFGH

*The _LR operand contains the state of the reverse limit switch. A value of zero always indicates that the
limit is active no matter what the configuration of the CN command is.

NOTE: This is not a command.

USAGE:

EXAMPLES:

While Moving Yes Default Value n/a

In a Program Yes Default Format n/a

Command Line Yes Default n value 1

Can Be Interrogated Yes

Used as an Operand No Distributed Control Specific Axis

MG _LRX Display the status of the reverse limit switch

JP#A,_LRX=0 Jump to label, #A, when reverse limit switch is
activated
155

LEGEND-MC User’s Manual
LS (List Program)
[General]

DESCRIPTION:

The LS command sends a listing of the program memory out of the port that issued the command. The
listing will start with the line pointed to by the first parameter, which can be either a line number or a label.
If no parameter is specified, it will start with line 0. The listing will end with the line pointed to by the
second parameter--again either a line number or label. If no parameter is specified, the listing will go to the
last line of the program.

ARGUMENTS: LS n,m where

n,m are valid numbers from 0 to 499, or labels. n is the first line to be listed, m is the last.

_LS returns the line number the program will return to after the current subroutine ends. If a program is not
running, the value is negative and reports the number of program lines in the controller.

USAGE:

EXAMPLES:

NOTE: Remember to quit the Edit Mode <cntrl> Q prior to giving the LS command.

While Moving Yes Default Value 0,Last Line

In a Program No Default Format ---

Command Line Yes

Can be Interrogated No

Used as an Operand No Distributed Control No, Local

:LS #A,6 List program starting at #A through line 6

002 #A

003 PR 500

004 BG

005 AM

006 WT 200
156

LEGEND-MC User’s Manual
LT (Latch Target)
[Motion]

DESCRIPTION:

The LT command is used for stopping an axis a defined distance after a registration mark (latch) input.
The distance specified by the LT command is in encoder counts. The distance must be sufficiently large
for the controller to decelerate normally at the specified deceleration rate. A stop code will be generated
if the distance is too small to stop for the deceleration rate or if the speed is too high. To Disable the latch
target, set LTX=0.

ARGUMENTS: LTX=x LTx,y,z,w LTa,b,c,d,e,f,g,h

POSSIBLE STOP CODES:

1 Motors stopped at commanded independent position (Latch input not received)

40 Stopped at Latch Target.

41 Latch Target overrun due to limit switch or stop command.

42 Latch Target overrun due to insufficient distance.

USAGE:

RELATED COMMANDS:

EXAMPLES:

While Moving Yes Default Value n/a

In a Program Yes Default Format ---

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes Distributed Control Specific Axis

"AL" Arm Latch

"RL" Report Latch

ALX Set latch function

LTX=25000 Set Latch Target to stop 25000 counts
after registration

PRX=100000 Position Relative Move

BGX Begin Motion

AMX After Motion

JP #NOMRK,_SCX=1 Jump to #NOMARK routine if did not
receive a registration mark
157

LEGEND-MC User’s Manual
LV (List Variables)
[General]

DESCRIPTION:

The LV command returns a listing of all of the program labels in memory. The listing will be in alphabetical
order.

ARGUMENTS: None

USAGE:

RELATED COMMANDS:

EXAMPLES:

While Moving Yes Default Value n/a

In a Program Yes Default Format n/a

Command Line Yes

Can be Interrogated Yes

Used as an Operand No Distributed Control No, Local

"LL" List Labels

: LV

APPLE = 60.0000

BOY = 25.0000

ZEBRA = 37.0000
158

LEGEND-MC User’s Manual
LZ (Leading Zeros)
[Setting]

DESCRIPTION:

The LZ command is used for formatting the values returned from interrogation commands or interrogation
of variables and arrays. By enabling the LZ function, all leading zeros of returned values will be removed.
This will reduce transmission time and potentially ease formatting issues on connected devices.

ARGUMENTS: LZ n where

1 to remove leading zeros

0 to disable the leading zero removal

USAGE:

EXAMPLES:

While Moving Yes Default Value 0

In a Program Yes Default Format n/a

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes Distributed Control No, Local

TE Tell error

0004

LZ 1 Inhibit leading zeros

TE Tell error

4

159

LEGEND-MC User’s Manual
MB (Modbus)
[I/O]

DESCRIPTION:

The MB command is used to communicate with I/O devices using the first two levels of the Modbus
protocol.

The format of the command varies depending on each function code. The function code, -1, designates that
the first level of Modbus is used (creates raw packets and receives raw data). The other codes are the 10
major function codes of the second level that the LEGEND-MC supports.

NOTE: For those command formats that have “addr”, this is the slave address. The slave address
may be designated or defaulted to the device handle number.

NOTE: All formats contain an h parameter. This designates connection handle number (A thru P).

ARGUMENTS:

Function Meaning Example

-1 Raw Packets MBh = -1, y, array []

1 Read Coil Status MBh = a, 1, t, b, array []

2 Read Input Status MBh = a, 2 , t, b, array []

3 Read Holding Registers MBh = a, 3, e, r, array []

4 Read Input Registers MBh = a, 4, e, r, array []

5 Write Single Coil MBh = a, 5, t, c

6 Write Single Register MBh = a, 6,g, s

7 Read Exception Status MBh = a, 7, array []

15 Write Multiple Coils MBh = a, 15, t, b, array []

16 Write Multiple Registers MBh = a, 16, e, r, array []

17 Report Slave ID MBh = a, 17, array []

Argument Description Argument Description

a Slave address h Connection handle number

array [] Name of array containing data r Number of registers

b Number of bits s 16 bit value

c 0 or 1 (to turn coil OFF or ON) t Starting bit number

e Starting register y Number of bytes

g Register number
160

LEGEND-MC User’s Manual
USAGE:

EXAMPLES:

This program was designed to read four analog inputs from 2 analog input cards (the first two cards) in
the rack of a Wago I/O system. Note Modbus function 3 is used to read the four regsiters starting at
register 0 (The E & R variables.) Register 0 correlates to Modbus address 40000. The data received is a
binary value that reporesents a +/- 10 volt input, thus the conversion calculation.

While Moving Yes Default Value ---

In a Program Yes Default Format ---

Command Line Yes Distributed Control Yes

IHF=>-2 Disconnect handle

IHF=192,168,3,11<502>2 Connect handle

MBF=6,16,632+(MODULE*8),NUMOFIO*2,A[] Send Modbus configuration command

MBF=6,6,1025,1 Modbus command to burn parameters in
OPTO-22 Ethernet module

MBF=6,2,0,1,A[] Read single digital input into array A
161

LEGEND-MC User’s Manual
MC (Motion Complete)
[Trippoint]

DESCRIPTION:

The MC command is a trippoint used to control the timing of events. This command will hold up execution
of the following commands until the current move is completed and the encoder reaches or passes the
specified target position. TW sets the timeout to declare an error if the encoder is not in position within a
specified time. If a timeout occurs, the trippoint will clear and the stopcode (SC command) will be set to 99.
The application program will jump to the special label #MCTIME, if included in your program.

ARGUMENTS: MC XYZWS or ABCDEFGH where

X, Y, Z, W, S specify the X, Y, Z, or W axis or sequence. No argument specifies that motion on all axes is
complete.

USAGE:

RELATED COMMANDS:

EXAMPLES:

NOTE: MC can be used to verify that the actual motion has been completed. In certain applications, that have very little KI
(integration), it is possible that the axis does not get to the exact position specified. This means the MC command will wait
the entire time of the TW command. Set the TW command to a realistic value.

While Moving Yes Default Value n/a

In a Program Yes Default Format n/a

Command Line Yes

Can be Interrogated No

Used as an Operand No Distributed Control Specific Axis

"BG" Begin

"AM" After Move

"TW" Timeout

#MCTIME Motion Complete Timeout Special Label

#MOVE Program MOVE

PR 5000 Position relative moves

BG Start the axis

MC After the move is complete

SB1 Set output 1 to logic 1

EN End of Program
162

LEGEND-MC User’s Manual
MF (Motion Forward)
[Trippoint]

DESCRIPTION:

The MF command is a trippoint used to control the timing of events. This command will hold up the
execution of the following command until the specified motor moves forward and crosses the position
specified. The units of the command are in quadrature counts. The MF command can also be used when
the encoder is the master and not under servo control, because the actual position is monitored.

ARGUMENTS: MFx, y, z, w or MFX=x or MFa, b, c, d, e, f, g, h where

x, y z, w, or a, b, c, d, e, f, g, h are signed integers

USAGE:

RELATED COMMANDS:

EXAMPLES:

NOTE: The accuracy of the MF command is the number of counts that occur in 2 msec. Multiply the speed by 2 msec to
obtain the maximum error. MF tests for absolute position. The MF command can also be used when the specified motor is
driven independently by an external device.

While Moving Yes Minimum Value -2147483648

In a Program Yes Maximum Value 2147483647

Command Line Yes Default Value ---

Can be Interrogated No Default Format ---

Used as an Operand No Distributed Control Specific Axis

"AR" Trippoint for after Relative Distance

"MR" Reverse motion to position

"AP" After Absolute Position

#TEST Program B

DP0 Define zero

JG 1000 Jog mode (speed of 1000 counts/sec)

BG Begin move

MF 2000 After passing the position 2000

V1=_TP Assign V1 position

MG "Position is", V1= ST Print Message Stop

EN End of Program
163

LEGEND-MC User’s Manual
MG (Message)
[General]

DESCRIPTION:

The MG command sends data out the specified port. This can be used to alert an operator, send instructions
or return a variable value.

ARGUMENTS: MG {Ex or P1} "m", {^n}, V {Fm.n or $m.n} {N} {Sn}

"m" is a text message including letters, numbers, symbols or <ctrl>G. Make sure that maximum line length
is not exceeded.

{^n} is an ASCII character specified by the value n in decimal.

V is a variable name or array element where the following specifiers can be used for formatting:

{Fm.n} Display variable in decimal format with m digits to left of decimal, and n to the right.

{$m,n} Display variable in hexadecimal format with m digits to left of decimal, and n to the right.

{Sn} Display variable as a string of length n where n is 1 thru 6

{N} Suppress carriage return line feed.

{Ex}For Ethernet and ‘x’ specifies the Ethernet handle (A,B,C,D,E, ... P). NOTE: if {Ex} is used, it must be
the first option after the MG command.

{P1} forces a message to the serial port.

NOTE: Multiple text, variables, and ASCII characters may be used, each must be separated by a
comma.

USAGE:

RELATED COMMANDS:

EXAMPLES:

Case 1: Message command displays ASCII strings

MG "Good Morning" Displays the string

Case 2: Message command displays variables or arrays

MG "The Answer is", TOTAL {F4.2} Displays the string with the content of variable TOTAL in local
format of 4 digits before and 2 digits after the decimal point.

Case 3: Message command sends any ASCII characters to the port.

MG {^13}, {^30}, {^37}, {N} Sends carriage return, characters 0 and 7 followed by no carriage return line
feed command to the port.

While Moving Yes Default Value -

In a Program Yes Default Format Variable Format

Command Line Yes

Can be Interrogated No

Used as an Operand No Distributed Control If {Ex} Used

"MG" Message
164

LEGEND-MC User’s Manual
MM (Master’s Modulus)
[Setting]

DESCRIPTION:

The MM command is part of the ECAM mode. The MM command replaces the master modulus setting of
the EM command. This allows camming with the auxiliary encoder as the master.

ARGUMENTS: MMx where

where x is the value of the master modulus in encoder counts.

USAGE:

OPERAND USAGE:

_MMx contains the master modulus

RELATED COMMANDS:

EXAMPLES:

While Moving No Minimum value 1

In a Program Yes Maximum value 2147483647

Not In a Program Yes Default Value n/a

Can be Interrogated No Default Format 8.0

Used as an Operand Yes Distributed Control Use SA

"EA" Select master cam axis

"EP" Define cam table intervals and start point

"ET" Cam table entries for the slave axis

"EB" Enable ECAM mode

EADX Select Auxiliary X axis as Ecam master

MM 30500 Set master modulus

EM 20000 Set main X axis slave modulus

MG_MM Return master modulus
165

LEGEND-MC User’s Manual
MO (Motor Off)
[Setting]

DESCRIPTION:

The MO command shuts off the PID control algorithm and the servo enable signal. The controller will
continue to monitor the motor position. To turn the motor back on use the Servo Here command (SH). This
command is not allowed while the servo is commanded in motion. Use the ST command first in that case.

The servo cannot be turned off (MO) while it is commanded to move. Issuing the MO command in this
mode will cause a command error. Use the ST, AM or AB commands before MO.

The action of performing MO then SH will clear any non critical amplifier alarms.

ARGUMENTS: MO XYZW or ABCDEFGH

USAGE:

OPERAND USAGE:

_MOn will return the state of the motor where n is an axis letter, 0 = servo loop on and 1 = servo loop off.

RELATED COMMANDS:

EXAMPLES:

NOTE: The MO command is useful for positioning the motors by hand. Turn them back on with the SH command.

While Moving No Default Value 1

In a Program Yes Default Format 1.0

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes Distributed Control Specific Axis

"SH" Servo Here

“AB” Abort

“AM” After Motion

“ST” Stop

MO Turn off motor

SH Turn motor on

Bob=_MO Sets Bob equal to the servo status

Bob= Return value of Bob. If 1, in motor off mode,
If 0, in servo mode
166

LEGEND-MC User’s Manual
MR (Motion Reverse)
[Trippoint]

DESCRIPTION:

The MR command is a trippoint used to control the timing of events. This command will hold up the
execution of the following command until the specified motor moves backward and crosses the position
specified. The units of the command are in quadrature counts. The MR command can also be used when
the encoder is the master and not under servo control.

ARGUMENTS: MR x, y, z, w or MRX=x or MR a, b, c, d, e, f, g, h where

x, y z, w, or a, b, c, d, e, f, g, h are signed integers

USAGE:

RELATED COMMANDS:

EXAMPLES:

NOTE: MR command accuracy is the number of counts that occur in 2 msec. Multiply speed by 2 msec to obtain maximum
error. MR tests for absolute position. The MR command can also be used when the specified motor is driven externally.

While Moving Yes Minimum Value -2147483648

In a Program Yes Maximum Value 2147483647

Command Line Yes Default Value ---

Can be Interrogated No Default Format ---

Used as an Operand No Distributed Control Specific Axis

"AR" Trippoint for after Relative Distance

"MF" Forward motion to position

"AP" Trippoint After absolute position

#TEST Program B

DP0 Define zero

JG 1000 Jog mode (speed of 1000 counts/sec)

BG Begin move

MR -3000 After passing the position -3000

V1=_TP Assign current position to variable V1.

MG "Position is", V1 Print Message

ST Stop

EN End of Program
167

LEGEND-MC User’s Manual
MT (Motor Type)
[Configuration]

DESCRIPTION:

The MT command selects the type of the motor and the polarity of the drive signal. Motor types include
standard servo motors which require a voltage in the range of +/- 10 Volts. The polarity reversal inverts the
analog signals.

Warning: This command interacts with the CE command, which reverses the incoming encoder signals. Use
caution (motor off, machine estopped) when changing the MT or CE commands. If the two commands are
not in agreement with each other, the motor will run away at full speed when enabled.

ARGUMENTS: MT x, y, z, w or MTX=x or MT a, b, c, d, e, f, g, h where

x, y z, w, or a, b, c, d, e, f, g, h have one of the following values

1 Servo motor (rotary motor moves counterclockwise when viewing shaft end of motor)

-1 Servo motor reversed polarity

USAGE:

OPERAND USAGE:

_MTn contains the value of the motor type where n is an axis letter.

EXAMPLES:

While Moving Yes Default Value 1

In a Program Yes Default Format 1.0

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes Distributed Control Specific Axis

MT 1 Configure x as servo

MT ? Interrogate motor type

V=_MT Assign motor type to variable
168

LEGEND-MC User’s Manual
MW (Modbus Wait)
[Configuration]

DESCRIPTION:

The MW command sets the controller to wait for the ACK signal from a remote I/O device before going
to the next command. With this setting disabled, the controller will continue executing commands after
an I/O command that requires it to send a modbus packet. In this mode, the I/O state cannot be
guaranteed. Enabling this setting is the default, and is recommended. This is a configuration command
and only needs to be set once in the program. This configuration is not burnable, and is set to “enabled” at
power up.

ARGUMENTS: MW n where

n is 0 to disable the Modbus Wait function.

n is 1 to enable the Modbus Wait function.

USAGE:

OPERAND USAGE:

_MW contains the contains current setting of the MW command.

RELATED COMMANDS:

EXAMPLES:

Typically this command would be set once at the top of the application program.

While Moving Yes Minimum Value 0

In a Program Yes Maximum Value 1

Command Line Yes Default Value 1

Can be Interrogated Yes

Used as an Operand Yes Distributed Control No, Local

"CB" Clear Bit

"MB" Modbus Function Code

"SB" Set Bit

“HW” Handle Wait

MW1 Enable Modbus Wait function.
169

LEGEND-MC User’s Manual
NA (Number of Axes)
[Configuration]

DESCRIPTION:

This command is obselete. Use the HC command instead.

NA defines the total number of axes used in a distributed network control system. This command is used on
the master controller. For example; using 3 LEGEND-MC controllers. The command NA3 would be given
to the master controller.

ARGUMENTS: NA n where

n is an integer. this number represents the number of axes in a distributed control system.

USAGE:

OPERAND USAGE:

_NA contains the contains the number of axes.

RELATED COMMANDS:

EXAMPLES:

NOTE: executing the HC command to connect to other axes will automatically set the NA command.

While Moving Yes Minimum Value 1

In a Program Yes Maximum Value 8

Command Line Yes Default Format ---

Can be Interrogated Yes

Used as an Operand Yes Distributed Control No, Local

"CH" Connect to the internet handles for slave operation

"IH" Set internet handles

"QW" Set Slave Data Record Update Rate

NA2 Command given to an LEGEND-MC acting as
a multi-axis network master with one slave.
170

LEGEND-MC User’s Manual
NB (Notch Bandwidth)
[Tuning]

DESCRIPTION:

The NB command sets real part of the notch poles

ARGUMENTS: NB x, y, z, w or NBX=x or NB a, b, c, d, e, f, g, h where

x, y z, w, or a, b, c, d, e, f, g, h are unsigned integers

USAGE:

OPERAND USAGE:

_NBn contains the contains the value of the notch bandwidth where n is an axis letter.

RELATED COMMANDS:

EXAMPLES:

While Moving Yes Minimum value 0

In a Program Yes Maximum value 1000000 / 4 * _TM

Command Line Yes Default Value 0.5

Used as an Operand Yes Default Format

Can be Interrogated Yes Distributed Control Specific Axis

"NF" Notch Filter

"NZ" Notch Zero

NBX = 10 Sets the real part of the notch pole to 10 Hz

NOTCH = _NBX Sets the variable "NOTCH" equal to the notch
bandwidth value for the X axis
171

LEGEND-MC User’s Manual
NF (Notch Filter)
[Tuning]

DESCRIPTION:

The NF command sets the frequency of the notch filter, which is placed in series with the PID
compensation.

ARGUMENTS: NF x, y, z, w or NFX=x or NF a, b, c, d, e, f, g, h where

x, y z, w, or a, b, c, d, e, f, g, h are unsigned integers

USAGE:

OPERAND USAGE:

_NFn contains the value of notch filter for the specified axis where n is an axis letter.

RELATED COMMANDS:

EXAMPLES:

While Moving Yes Minimum value 0

In a Program Yes Maximum value 1000000 / 4 * _TM

Command Line Yes Default Value 0

Can be Interrogated Yes Default Format

Used as an Operand Yes Distributed Control Specific Axis

"NB" Notch bandwidth

"NZ" Notch Zero

NF, 20 Sets the notch frequency of Y axis to 20 Hz
172

LEGEND-MC User’s Manual
NO (No Operation)
[General]

DESCRIPTION:

The NO command performs no action in a sequence, but can be used as a comment in a program. After the
NO, characters can be given to form a program comment up to the maximum line length. This helps to
document a program.

An apostrophe (‘) may also be used instead of the NO to document a program. Comments designated with
either the NO or ‘ remain in the program as it is downloaded to the controller, thus occupying some
memory space.

ARGUMENTS: NO m where

m is any group of letters, numbers, symbols or <cntrl>G

USAGE:

RELATED COMMANDS:

EXAMPLES:

While Moving Yes Default Value ---

In a Program Yes Default Format ---

Command Line Yes

Can be Interrogated No

Used as an Operand No Distributed Control No, Local

"//" This is a comment command YTerm filters out

"‘" The apostrophe line comment

#A Program A

NO No Operation

NO This Program No Operation

NO Does Absolutely No Operation

NO Nothing No Operation

EN End of Program
173

LEGEND-MC User’s Manual
NZ (Notch Zero)
[Tuning]

DESCRIPTION:

The NZ command sets the real part of the notch zero.

ARGUMENTS: NZ x, y, z, w or NZX=x or NZ a, b, c, d, e, f, g, h where

x, y z, w, or a, b, c, d, e, f, g, h are unsigned integers

USAGE:

OPERAND USAGE:

_NZn contains the value of the Notch filter zero for the specified axis where n is an axis letter.

RELATED COMMANDS

EXAMPLES:

While Moving Yes Minimum value 0

In a Program Yes Maximum value 1000000 / 4 * _TM

Command Line Yes Default Value 0.5

Can be Interrogated Yes Default Format

Used as an Operand Yes Distributed Control Specific Axis

"NB" Notch Bandwidth

"NF" Notch Filter

NZX = 10 Sets the real part of the notch pole to 10 Hz
174

LEGEND-MC User’s Manual
OB (Output Bit)
[I/O]

DESCRIPTION:

The OB n, logical expression command defines output bit n = 1 through 4 as either 0 or 1 depending on the
result from the logical expression. Any non-zero value of the expression results in a one on the output.

When using this command to access I/O on a slave controller in distributed control mode, use it with the
handle for outbound master commands. Do not use the handle which is for incoming slave update packets.
For example, if a slave is connected on handles E and F, reference the I/O for the slave on handle E.

This command also works for Modbus outputs.

ARGUMENTS: OB n, expression where

n is 1 to 4 for the local controller. However, remote local outputs can be used (i.e. Offset 100 per handle for
SMC outputs; Offset 1000 per handle for Modbus outputs)

expression is any valid logical expression, variable or array element.

USAGE:

MODBUS:

NOTE: When using Modbus devices, the I/O points of the modbus devices are calculated
using the following formula:
n = (SlaveAddress*1000) + (HandleNum*1000) + ((Module-1)*4) + (Bitnum-1)

Slave Address is used when the ModBus device has slave devices connected to it and specified as
Addresses 0 to 255. The use of slave devices for modbus are very rare and this number will usually be 0.

HandleNum is the handle specifier from A to P (1 - 16).

Module is the position of the module in the rack from 1 to 16.

BitNum is the I/O point in the module from 1 to 4.

EXAMPLES:

While Moving Yes Default Value ---

In a Program Yes Default Format ---

Command Line Yes

Can be Interrogated No

Used as an Operand No Distributed Control Offset 100

OB 1, POS 1 If POS1 is non-zero, Bit 1 is high. If POS1 is zero, Bit 1 is low

OB 2, (@IN[1]&@IN[2]) If Input 1 and Input 2 are both high, then Output 2 is set high

OB 3, COUNT[1] If the element 1 in the array is zero, clear bit 3, otherwise set bit 3

OB N, COUNT[1] If element 1 in the array is zero, clear bit N

OB 3003,(X<5) Set output 3 on Modbus device at handle "C" if X is less than 5,
otherwise turn off the output
175

LEGEND-MC User’s Manual
OC (Output Compare)
[I/O]

DESCRIPTION:

The OC command allows the generation of output pulses based on the main encoder positions. The output is
a low-going pulse with a duration of approximately 600 nanoseconds and is available at the output compare
signal.

The auxiliary encoder cannot be used while using this function.

NOTE: The OC function requires that the main encoder and auxiliary encoders be configured
exactly the same (see the command, CE). For example: CE 0, CE 10.

The output on pin 7 of the 5 CN connector is a TTL signal and requires JP3 to be installed. The output is
accurate to +/- 40 nanoseconds.

ARGUMENTS: OCX = m, n where

m = Absolute position for first pulse. Integer between -2⋅ 109 and 2 ⋅ 109

n = Incremental distance between pulses. Integer between -65535 and 65535.

OCx = 0 will disable the Output Compare function.

The sign of the parameter, n, will designate the expected direction of motion for the output compare
function. When moving in the opposite direction, output compare pulses will occur at the incremental
distance of 65536-|n| where |n| is the absolute value of n.

USAGE:

OPERAND USAGE:

_OCx contains the state of the OC function

_OCx = 0: OC function has been enabled but not generated any pulses.

_OCx = 1: OC function not enabled or has generated the first output pulse.

EXAMPLES:

While Moving Yes Default Value -

In a Program Yes Default Format -

Command Line Yes

Can be Interrogated No

Used as an Operand Yes Distributed Control Use SA

OCX=300,100 Select X encoder as position sensor. First
pulse at 300. Following pulses at 400, 500…
176

LEGEND-MC User’s Manual
OE (Off On Error)
[Setting]

DESCRIPTION:

The OE command causes the controller to shut off the motor command if the position error exceeds the
limit specified by the ER command or an abort occurs from either the abort input or an AB command.

ARGUMENTS: OE x, y, z, w or OEX=x or OE a, b, c, d, e, f, g, h where

x, y z, w, or a, b, c, d, e, f, g, h are unsigned integers

USAGE:

OPERAND USAGE:

_OEn contains the status of the off-on-error function where n is an axis letter.

RELATED COMMANDS:

EXAMPLES:

NOTE: The OE command is useful for preventing system damage on excessive error.

While Moving Yes Default Value 0

In a Program Yes Default Format 1.0

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes Distributed Control Specific Axis

"ER" Error limit

"SH" Servo Here

#POSERR Error Subroutine

OE 1 Enable OE

OE 0 Disable OE
177

LEGEND-MC User’s Manual
OF (Offset)
[Tuning]

DESCRIPTION:

The OF command sets a bias voltage in the motor command output or returns a previously set value. This
can be used to counteract gravity or an offset in an amplifier. If the PID values are zero, then the output
voltage will be the OF value.

This command is useful when compensating for gravity in a vertical load application.

ARGUMENTS: OF x, y, z, w or OFX=x or OF a, b, c, d, e, f, g, h where

x, y z, w, or a, b, c, d, e, f, g, h are signed integers

USAGE:

OPERAND USAGE:

_OFn contains the offset in volts where n is an axis letter.

EXAMPLES:

While Moving Yes Minimum Value -9.9988

In a Program Yes Maximum Value 9.9988

Command Line Yes Default Value 0

Can be Interrogated Yes Default Format 1.4

Used as an Operand Yes Distributed Control Specific Axis

OF 1 Set offset to 1 volt

OF ? Return offset

1.0000
178

LEGEND-MC User’s Manual
OP (Output Port)
[I/O]

DESCRIPTION:

The OP command sets 4 bits of data on the output port of the controller simultaneously.

The n parameter is used to specify the number of bits affected starting with the LSB. The other bits are
masked. For example, if n=2, only outputs 1 and 2 will be changed by OP m. If the n parameter is not
specified, all bits will be changed.

To set or read outputs on a slave controller use the SA command.

ARGUMENTS: OP m where

m is an integer

USAGE:

OPERAND USAGE:

_OP contains the status of the outputs.

RELATED COMMANDS:

EXAMPLES:

While Moving Yes Minimum m Value 0

In a Program Yes Maximum m Value 15

Command Line Yes Default m Value 0

Can be Interrogated Yes Default Format 3.0

Used as an Operand Yes Distributed Control Use SA

"SB" Set output bit

"CB" Clear output bit

OP 0 Clear Output Port -- all bits

OP 3 Set outputs 1 and 2; clear the others

OP 7 Set outputs 1, 2 and 3.

MG_OP Message out the status of the outputs

SAA=”MG”,”_OP” Send command MG_OP to slave controller on
handle A

SlaveOut=_SAA Store the returned value to variable

SAA=”OP”,$OF Set all four outputs ON in slave controller on
handle A
179

LEGEND-MC User’s Manual
@OUT (Output)
[Function]

DESCRIPTION:

@OUT returns the status of the digital output number or variable given in square brackets. Note that the
@OUT command is a function, which means that it does not follow the convention of the commands, and
does not require the underscore when used as an operand.

ARGUMENTS: @OUT [n] where

n is an integer corresponding to a specific output on the controller. The first output on the controller is
denoted as output 1. A LEGEND-MC controller has 4 digital outputs plus applicable I/O connected by
Modbus.

NOTE: When using Modbus devices, the I/O points of the modbus devices are calculated using the
following formula:

n = (SlaveAddress*1000) + (HandleNum*1000) + ((Module-1)*4) + (Bitnum-1)

Slave Address is used when the ModBus device has slave devices connected to it and specified as
Addresses 0 to 255. Please note that the use of slave devices for modbus are very rare and this number will
usually be 0.

HandleNum is the handle specifier from A to P (1 - 16).

Module is the position of the module in the rack from 1 to 16.

BitNum is the I/O point in the module from 1 to 4.

USAGE:

EXAMPLES:

NOTE: @OUT only returns the output state of local controller.

While Moving Yes Minimum n value 1

In a Program Yes Maximum n value 8

Not in a program Yes Default Value ---

Can be Interrogated No Default Format ---

Used as an Operand Yes Distributed Control No, Local

#TEST Program TEST

VAR1=3 Set variable

MG @OUT[VAR1] Display only the whole number portion of
VAR1

EN End of program
180

LEGEND-MC User’s Manual
PA (Position Absolute)
[Motion]

DESCRIPTION:

The PA command will set the absolute destination of the next move. The position is referenced to absolute
zero. If a ? is used, then the current destination (current commanded position if not moving, destination if
in a move) is returned. For each single move, the largest position move possible is +/- 2147483647. Units
are in quadrature counts.

ARGUMENTS: PA x, y, z, w or PAX=x or PA a, b, c, d, e, f, g, h where

x, y z, w, or a, b, c, d, e, f, g, h are signed integers

USAGE:

OPERAND USAGE:

_PAn contains current command position if not moving, start position if given during motion where n is an
axis letter.

RELATED COMMANDS:

EXAMPLES:

While Moving No Minimum Value -2147483647

In a Program Yes Maximum Value 2147483648

Command Line Yes Default Value ---

Can be Interrogated Yes Default Format Position Format

Used as an Operand Yes Distributed Control Specific Axis

"PR" Position relative

"SP" Speed

"AC" Acceleration

"DC" Deceleration

"BG" Begin

:PA 400 X-axis will go to 400 counts

:PA ? Returns the current commanded position

0000000

:BG Start the move

:PA 700 X-axis will go to 700 on the next move

:BG
181

LEGEND-MC User’s Manual
PF (Position Format)
[Setting]

DESCRIPTION:

The PF command allows the user to format the position numbers such as those returned by TP. The number
of digits of integers and the number of digits of fractions can be selected with this command. An extra digit
for sign and a digit for decimal point will be added to the total number of digits. If PF is minus, the format
will be hexadecimal and a dollar sign will precede the characters. Hex numbers are displayed as 2's
complement with the first bit used to signify the sign.

If a number exceeds the format, the number will be displayed as the maximum possible positive or negative
number (i.e. 999.99, -999, $8000 or $7FF).

The PF command can be used to format values returned from the following commands:

USAGE:

ARGUMENTS: PF m.n where

m is an integer. The negative sign for m specifies hexadecimal representation.

n is an integer

USAGE:

OPERAND USAGE:

_PF contains the value of position format parameter.

EXAMPLES:

BL ? PA ?

DE ? PR ?

DP ? TE

FL ?

IP ?

TP

While Moving Yes Minimum m Value -8

In a Program Yes Maximum m Value 10

Command Line Yes Default m Value 10.0

Can be Interrogated Yes Minimum n Value 0

Used as an Operand Yes Maximum n Value 4

Default n Value 0

Default Format 10.0

Distributed Control No, Local

:TP Tell position

0000000021 Default format

:PF 5.2 Change format to 5 digits of integers and 2 of
fractions
182

LEGEND-MC User’s Manual
:TP Tell Position

00021.00

PF-5.2 New format Change format to hexadecimal*

:TP Tell Position

$00015.00 Report in hex
183

LEGEND-MC User’s Manual
PN (Legend Parameter)
[Configuration]

DESCRIPTION:

The PN command sets or returns data residing in the Legend amplifier. The PN command causes the
controller to communicate to the amplifier via a serial connection on the mating connector. The available
parameter numbers are listed below. If the parameter was not accepted by the amplifier, a command error
will result. (TC=131 Amplifier Error) Paraemters that are successfully sent to the amplifier are stored in
EEPROM memory and effective immediately. This memory is separate from the controller memory, so
performing a master reset on the controller will not reset these values.

ARGUMENTS: PN p,v where

p is the parameter number, typically entered as a hex value, this is amplifier standard.

v is the value of the parameter, in the units required by the parameter.
 USAGE:

OPERAND USAGE:

_PNp will return the value of the parameter where p is the parameter number.

RELATED COMMANDS:

ADDITIONAL INFORMATION:

EXAMPLES:

While Moving Yes Default Value n/a

In a Program Yes Default Format hex

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes Distributed Control Use SA

"TS" Tell Switches

Parameter Description Default Min Max

$400 Maximum Torque Reference Gain
Input (mV)

10000 1000 10000

$401 Torque Reference Filter Frequency
(0.01 ms)

10 0 65535

$402 Forward Torque Limit (%) 800 0 800

$403 Negative Torque Limit (%) 800 0 800

$407 Speed Limit under torque control
(0.1%)

1000 0 1000

PN $400,2000 Set torque reference gain

MG _PN$407 Read Speed Limit
184

LEGEND-MC User’s Manual
PR (Position Relative)
[Motion]

DESCRIPTION:

The PR command sets the incremental distance and direction of the next move. The move is referenced
with respect to the current position. Units are in quadrature counts.

ARGUMENTS: PR x, y, z, w or PRX=x or PR a, b, c, d, e, f, g, h where

x, y z, w, or a, b, c, d, e, f, g, h are signed integers

USAGE:

OPERAND USAGE:

_PRn will return the current incremental distance where n is an axis letter.

RELATED COMMANDS:

EXAMPLES:

While Moving No Minimum n Value -2147483648

In a Program Yes Maximum n Value 2147483647

Command Line Yes Default Value 0

Can be Interrogated Yes Default Format Position Format
setting

Used as an Operand Yes Distributed Control Specific Axis

"BG" Begin

"AC" Acceleration

"DC" Deceleration

"SP" Speed

"IP" Increment Position

:PR 100 On the next move the X-axis will go 100
counts,

:BG

:PR ? Return relative distances

0000000100
185

LEGEND-MC User’s Manual
PW (Password)
[Configuration]

DESCRIPTION: PW

The (PW) Password command sets or changes the controller's security password. The command requires
two parameters; p,p. Both parameters are the new password up to 8 characters in length. Both parameters
must be identical for the new password to be accepted. The password can only be set or changed while the
controller is in the "Unlocked" mode, (see the LC command) or a command error will result. Once a valid
password is entered, it is automatically burned into the controller EEPROM.

ARGUMENTS: PW p,p

where p,p are identical passwords up to 8 characters in length.

All characters can be alphabetic or numeric.

USAGE:

RELATED COMMANDS:

EXAMPLES:

While Moving Yes Default Value ---

In a Program No Default Format ---

Command Line Yes

Used as an Operand No

Can be Interrogated No Distributed Control No, Local

"LC" Lock Controller

PW MOTION,MOTION Set a new password "MOTION"

LC MOTION,1 Lock Controller

LC MOTION,0 Unlock Controller
186

LEGEND-MC User’s Manual
QD (Download Array)
[General]

DESCRIPTION:

The QD command transfers array data from the host computer to the LEGEND-MC. QD array[],start,end
requires that the array name be specified along with the first element of the array and last element of the
array. The array elements can be separated by a comma (,) or by <CR><LF>. The downloaded array is
terminated by a <control>Z, <control>Q, <control>D or \.

ARGUMENTS: QD array[], start, end where

“array[]” is a valid array name

“start” is the first element of the array (default=0)

“end” is the last element of the array (default=last element)

USAGE:

RELATED COMMANDS:

While Moving No Default Value 0

In a Program Yes Default Format Position Format

Command Line Yes

Can be Interrogated No

Used as an Operand No Distributed Control No, Local

"UL" Upload Program

QU Array Upload
187

LEGEND-MC User’s Manual
QL (Query Latch - Auxiliary Encoder)
[General]

DESCRIPTION:

The QL command will return the last position captured by the latch on the auxiliary axis. The latch must
first be armed by the AL command.

ARGUMENTS: QLn where

n = XYZW or ABCDEFGH for the auxiliary encoder latch.

USAGE:

OPERAND USAGE:

_QLn contains the latched position where n is an axis letter.

RELATED COMMANDS:

EXAMPLES:

While Moving Yes Default Value n/a

In a Program Yes Default Format Position Format

Command Line Yes

Can be Interrogated No

Used as an Operand Yes Distributed Control Specific Axis

"AL" Arm Latch

“RL” Report Latch

JG 5000 Set up to jog

BG Begin jog

AL Arm the latch; assume that after about 2
seconds, input goes low

#WAIT; JP #WAIT,_ALX=2 Wait while the auxiliary latch has not
occurred.

QL Report the auxiliary latch
188

LEGEND-MC User’s Manual
QR (Data Record)
[General]

DESCRIPTION:

The QR command causes the controller to return a record of information regarding controller status. This
status information includes 4 bytes of header information and specific blocks of information as specified
by the command arguments. The details of the status information is described in the communication
chapter of the user’s manual. This command is not designed to be used in the application program, it is
designed for data exchange with a computer.

ARGUMENTS: QR xx where

x is X,Y,Z,W,A,B,C,D,E,F,G,H or I or any combination to specify the axis, axes, or I/O status

I represents the status of the I/O

The Communication chapter of the users manual provides the definition of the data record information.

USAGE:

RELATED COMMANDS:

While Moving Yes Default Value -

In a Program Yes Default Format -

Command Line Yes Distributed Control No, Local

"QZ" Return DMA / Data Record information
189

LEGEND-MC User’s Manual
QU (Upload Array)
[General]

DESCRIPTION:

The QU command transfers array data from the LEGEND-MC to a host computer. QU requires that the
array name be specified along with the first element of the array and last element of the array. The uploaded
array will be followed by a <control>Z as an end of text marker.

ARGUMENTS: QU array[], start, end, delim where

“array[]” is a valid array name

“start” is the first element of the array (default=0)

“end” is the last element of the array (default=last element)

“delim” specifies the character used to delimit the array elements. If delim is 1, then the array elements will
be separated by a comma. Otherwise, the elements will be separated by a carriage return.

USAGE:

RELATED COMMANDS:

While Moving No Default Value 0

In a Program Yes Default Format Position Format

Command Line Yes

Can be Interrogated No

Used as an Operand No Distributed Control No, Local

"DL" Download program

“QD” Download array
190

LEGEND-MC User’s Manual
QW (Slave Record Update Rate)
 [Configuration]
DESCRIPTION:

The QW command is given to the master controller of a distributed system. The value establishes the
update rate for data records to be sent from the slave controllers to the master controller. This command is
executed on the master controller, which distributes the setting to the proper slave.

ARGUMENTS: QWh=n where

h is the handle being used to send commands to the slave controller.

n = an even integer between 4 and 16000. this sets the period at which the slave controller updates the
master controller. the value of n represents the number of servo update cycles (default update cycle is 1
msec, see the TM command). The slave controller will always wait for this period after a data record has
been sent before generating a new record.

USAGE:

RELATED COMMANDS:

EXAMPLES:

NOTE: The recommended value for QW is (11mSec * number of slave axes) Example, a system with three
total axes should have a QW setting of 22.

While Moving Yes Default Value ---

In a Program Yes Default Format ---

Command Line Yes Distributed Control Specific Axis

"CH" Connect Handle

"NA" Number of Axes

"SA" Send Command

CHC=A,B Using one LEGEND-MC as a master and one
LEGEND-MC as a slave. This command
assigns the slave, identified by the C axis
designator, with Handle A for commands and
Handle B for status returned from the slave.

QWB=20 Sets the update rate for the slave controller to
20 msec (TM=1000).
191

LEGEND-MC User’s Manual
QZ (Return Data Record Information)
[General]

DESCRIPTION:

The QZ command is an interrogation command that returns information regarding the Data Record. The
controller’s response to this command will be the return of 4 integers separated by commas. The four fields
represent the following:

First field returns the number of axes.

Second field returns the number of bytes to be transferred for general status

Third field returns the number bytes to be transferred for coordinated move status

Fourth field returns the number of bytes to be transferred for axis specific information

ARGUMENTS: QZ

USAGE:

RELATED COMMANDS:

While Moving Yes Default Value ---

In a Program Yes Default Format

Command Line Yes Distributed Control No, Local

“DR” DMA update rate

“QR” Data Record
192

LEGEND-MC User’s Manual
RA (Record Array)
[General]

DESCRIPTION:

The RA command selects up to four arrays for automatic data capture. The selected arrays must have been
dimensioned by the DM command. The data to be captured is specified by the RD command and time
interval by the RC command.

ARGUMENTS: RA n [],m [],o [],p [] where

n,m,o,p are dimensioned arrays as defined by DM command. The [] contain nothing.

USAGE:

RELATED COMMANDS:

EXAMPLES:

NOTE: The record array mode is useful for recording the real-time motor position during motion. The data is automatically
captured in the background and does not interrupt the program sequencer. The record mode can also be used for a teach or
learn of a motion path.

While Moving Yes Default Value ---

In a Program Yes Default Format ---

Command Line Yes

Can be Interrogated No

Used as an Operand No Distributed Control No, Local

"DM" Dimension Array

"RD" Record Data

"RC" Record Interval

#Record Label

DM POS[100] Define array

RA POS[] Specify Record Mode

RD _TP Specify data type for record

RC 1 Begin recording at 2 msec intervals

PR 1000;BG Start motion

EN End
193

LEGEND-MC User’s Manual
RC (Record)
[General]

DESCRIPTION:

The RC command begins recording for the Automatic Record Array Mode (RA). RC 0 stops recording.

ARGUMENTS: RC n,m where

n is an integer 1 thru 8 and specifies 2n samples between records. RC 0 stops recording.

m is optional and specifies the number of records to be recorded. If m is not specified, the DM number will
be used. A negative number for m causes circular recording over array addresses 0 to m-1. The address for
the array element for the next recording can be interrogated with _RD.

USAGE:

OPERAND USAGE:

_RC contains status of recording '1' if recording, '0' if not recording.

RELATED COMMANDS:

EXAMPLES:

While Moving Yes Minimum n Value 0

In a Program Yes Maximum n Value 8

Command Line Yes Default n Value ---

Can be Interrogated Yes Minimum m Value -1

Used as an Operand Yes Maximum m Value 8000

Default m Value ---

Default Format ---

Distributed Control No, Local

"DM" Dimension Array

"RD" Record Data

"RA" Record Array Mode

#RECORD Record

DM Torque[1000] Define Array

RA Torque[] Specify Record Mode

RD _TT Specify Data Type

RC 2 Begin recording, set 4 servo samples between
records

JG 1000;BG Begin motion

#A;JP #A,_RC=1 Loop until done

MG "DONE RECORDING" Print message

EN End program
194

LEGEND-MC User’s Manual
RD (Record Data)
[General]

DESCRIPTION:

The RD command specifies the data type to be captured for the Record Array (RA) mode. The data types
include:

ARGUMENTS: RD m1, m2, m3, m4 where

the arguments are the data type to be captured using the record array feature. The order is important. Each
of the four data types corresponds with the array specified in the RA command.

USAGE:

OPERAND USAGE:

_RD contains the address for the next array element for recording.

RELATED COMMANDS:

dATA TYPE mEANING

_DE 2nd encoder

_TP Position

_TE Position error

_SH Commanded position

_RL Latched position

_TI Inputs

_OP Outputs

_TS Switches, only 0-4 bits valid

_SC Stop code

_TT Tell torque

While Moving Yes Default Value ---

In a Program Yes Default Format ---

Command Line Yes

Can be Interrogated No

Used as an Operand Yes Distributed Control No, Local

"RA" Record Array

"RC" Record Interval

"DM" Dimension Array
195

LEGEND-MC User’s Manual
EXAMPLES:

DM ERRORX[50] Define array

RA ERRORX[] Specify record mode

RD _TE Specify data type

RC1 Begin record

JG 1000;BG Begin motion
196

LEGEND-MC User’s Manual
RE (Return from Error)
[Program Flow]

DESCRIPTION:

The RE command is used to end a position error handling subroutine or limit switch handling subroutine.
The error handling subroutine begins with the #POSERR label. The limit switch handling subroutine
begins with the #LIMSWI. An RE at the end of these routines causes a return to the main program. Care
should be taken to be sure the error or limit switch conditions no longer occur to avoid re-entering the
subroutines. If the program sequencer was waiting for a trippoint to occur, prior to the error interrupt, the
trippoint condition is preserved on the return to the program if RE1 is used. RE0 clears the trippoint. To
avoid returning to the main program on an interrupt, use the ZS command to zero the subroutine stack. No
RE is needed after ZS. After using ZS, use a JP command to return to a key location in the main program.

ARGUMENTS: RE n where

0 clears the interrupted trippoint

1 restores state of trippoint

USAGE:

RELATED COMMANDS:

EXAMPLES:

NOTE: An application program must be executing for the #LIMSWI and #POSERR subroutines
to function.

While Moving No Minimum n Value 0

In a Program Yes Maximum n Value 1

Command Line No Default Value 0

Can be Interrogated No Default Format ---

Used as an Operand No Distributed Control No, Local

#POSERR Excessive Position Error Special Label

#LIMSWI Limit Switch Special Label

#A;JP #A;EN Label for main program

#POSERR Begin Error Handling Subroutine

MG "ERROR" Print message

SB1 Set output bit 1

RE Return to main program and clear trippoint
197

LEGEND-MC User’s Manual
RI (Return from Interrupt)
[Program Flow]

DESCRIPTION:

The RI command is used to end the interrupt subroutine beginning with the label #ININT. An RI at the end
of this routine causes a return to the main program. The RI command also re-enables input interrupts. If the
program sequencer was interrupted while waiting for a trippoint, such as WT, RI1 restores the trippoint
upon return to the program. RI0 clears a trippoint. To avoid returning after an interrupt, use the ZS
command to zero the subroutine stack. Check the example section for more details about using interrupts.

ARGUMENTS: RI n where

n = 0 or 1

0 clears interrupt trippoint

1 restores trippoint

USAGE:

RELATED COMMANDS:

EXAMPLES:

NOTE: An applications program must be executing for the #ININT subroutine to function.

While Moving No Minimum n Value 0

In a Program Yes Maximum n Value 1

Command Line Yes Default Value ---

Can be Interrogated No Default Format ---

Used as an Operand No Distributed Control No, Local

#ININT Input interrupt subroutine

"II" Enable input interrupts

#A;II1;JP #A;EN Program label

#ININT Begin interrupt subroutine

MG "INPUT INTERRUPT" Print Message

SB 1 Set output line 1

RI 1 Return to the main program and restore
trippoint
198

LEGEND-MC User’s Manual
RL (Report Latch)
[General]

DESCRIPTION:

The RL command will return the last position captured by the latch. The latch must first be armed by the
AL command. The armed state of the latch can be configured using the CN command.

NOTE: Use QL to read the value of the auxiliary latch on input #2.

ARGUMENTS: RLn where

n = XYZW or ABCDEFGH for the main encoder latch.

USAGE:

OPERAND USAGE:

_RLn contains the main encoder latched position where n is an axis letter.

RELATED COMMAND:

EXAMPLES:

While Moving Yes Default Value n/a

In a Program Yes Default Format Position Format

Command Line Yes

Can be Interrogated No

Used as an Operand Yes Distributed Control Specific Axis

"AL" Arm Latch

“QL” Query Latch (Auxiliary Encoder)

JG 5000 Set up to jog

BG Begin jog

AL Arm the latch; assume that after about 2
seconds, input goes low

#WAIT; JP #WAIT,_ALX=1 Wait here while latch is still armed

RL Report the latch

10000
199

LEGEND-MC User’s Manual
@RND (Round)
[Function]

DESCRIPTION:

@RND rounds a number or variable given in square brackets. Note that the @RND command is a
function, which means that it does not follow the convention of the commands, and does not require the
underscore when used as an operand.

ARGUMENTS: @RND [n] where

n is a number

USAGE:

EXAMPLES:

While Moving Yes Minimum n value -2147483648.9999

In a Program Yes Maximum n value 2147483648.9999

Not in a program Yes Default Value ---

Can be Interrogated No Default Format ---

Used as an Operand Yes Distributed Control No, Local

#TEST Program TEST

VAR1=123.456 Set variable

MG @RND[VAR1] Display the value of VAR1 rounded to the
nearest integer

VAR2=@RND[VAR1]+25 Perform calculation

EN End of program
200

LEGEND-MC User’s Manual
RP (Reference Position)
[Motion]

DESCRIPTION:

The RP command will return the commanded position of the servo. This is updated every sample period by
the profiler. RP-TP=TE. The units are in counts.

ARGUMENTS: RPn where

n = XYZW or ABCDEFGH

USAGE:

OPERAND USAGE:

_RPn contains the commanded position where n is an axis letter.

RELATED COMMAND:

EXAMPLES:

While Moving Yes Default Value n/a

In a Program Yes Default Format Position Format

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes Distributed Control QW Packet

"TP" Tell Position

PR 10000 Position Relative move

BG Begin motion

AM After Motion

RP Display the Reference Position

10000
201

LEGEND-MC User’s Manual
RS (Reset)
[General]

DESCRIPTION:

The RS command resets the processor to its power-on condition. The previously saved (burned) state of the
controller, along with parameter values, and saved sequences are restored.

ARGUMENTS: RSn where

0 (or no parameter) restores burned parameters and clears application program

1 restores burned parameters only

2 clears application programs only
USAGE:

EXAMPLES:

While Moving Yes Default Value 0

In a Program No Default Format ---

Command Line Yes

Can be Interrogated No

Used as an Operand No Distributed Control No, Local

RS Reset the controller
202

LEGEND-MC User’s Manual
<control>R<control>S (Master Reset)
[General]

DESCRIPTION:

The Master Reset command resets the LEGEND-MC to factory default settings and erases the EEPROM.

A master reset can also be performed by installing a jumper on the LEGEND-MC at the location labelled
JP1/MR. The controller must be removed from the amplifier to access the jumper. The controller must be
reattached to the amplifier and powered ON to perform the master reset. Remove the jumper after this
procedure.

USAGE:
While Moving Yes Default Value ---

In a Program No Default Format ---

Command Line Yes

Can be Interrogated No

Used as an Operand No Distributed Control No, Local
203

LEGEND-MC User’s Manual
<control>R<control>V (Firmware Revision)
[General]

DESCRIPTION:

The Revision command causes the controller to return the firmware revision information.

USAGE:
While Moving Yes Default Value -

In a Program No Default Format -

Command Line Yes

Can be Interrogated No

Used as an Operand No Distributed Control No, Local
204

LEGEND-MC User’s Manual
SA (Send Command)
[General]

DESCRIPTION:

SA sends a command from the master to the slave controller of a distributed control system. Any command
can be sent to a slave controller and will be interpreted by the slave as a “local” command. Some
commands are only “local” commands and must be sent with the SA command. Refer to the discussion of
local vs. global commands in this manual. Yaskawa recommends using a TCP handle when sending the SA
command.

When using this command to access I/O on a slave controller in distributed control mode, use it with the
handle for outbound master commands. Do not use the handle which is for incoming slave update packets.
For example, if a slave is connected on handles E and F, reference the I/O for the slave on handle E.

ARGUMENTS: SAh=arg or SAh= arg, arg, arg, arg, arg, arg, arg, arg where

h is the handle being used to send commands to the slave controller.

arg is a number, controller operand, variable, mathematical function, or string; the range for numeric
values is 4 bytes of integer (231) followed by two bytes of fraction (+/- 2,147,483,647.9999). The
maximum number of characters for a string is 6. Strings are identified by quotations.

Typical usage would have the first argument as a string such as “KI” and the subsequent arguments as the
arguments to the command: Example SAF= “KI”,2 would send the command KI2 to the slave controller on
handle F.

USAGE:

OPERAND USAGE:

_SAhn gives the value of the response to the command sent with an SA command. The h value represents
the handle A thru P and the n value represents the specific field returned from the controller (1-8). If the
specific field is not used, the operand will be (-231).

RELATED COMMANDS:

EXAMPLES:

Recommended Send Method

Recommended Receive Method

While Moving Yes Default Value ---

In a Program Yes Default Format ---

Command Line Yes Distributed Control Yes

"IH" Set Internet handles
“HC” Handle Connect
"LO" Lock out communication channels

SAA=”KI”,2 Sends the command to Handle A (slave controller): KI 2
SAA=”KIX=2”
SAA=”TE” Sends the command to Handle A (slave controller): TE
MG_SAA : 132 Display the content of the operand _SAA (first response to TE command
205

LEGEND-MC User’s Manual
SB (Set Bit)
[I/O]

DESCRIPTION:

The SB command sets one of four bits on the output port, slave controller, or Modbus I/O.

When using this command to access I/O on a slave controller in distributed control mode, use it with the
handle for outbound master commands. Do not use the handle which is for incoming slave update packets.
For example, if a slave is connected on handles E and F, reference the I/O for the slave on handle E.

ARGUMENTS: SB n where

n is an integer in the range 1 to 4 decimal or Modbus address. See chart below for setting outputs on slave
controllers.

DISTRIBUTED CONTROL:

MODBUS:
NOTE: When using Modbus devices, the I/O points of the modbus devices are calculated using the
following formula:

n = (SlaveAddress*1000) + (HandleNum*1000) + ((Module-1)*4) + (Bitnum-1)

Slave Address is used when the ModBus device has slave devices connected to it and specified as
Addresses 0 to 255. Please note that the use of slave devices for modbus are very rare and this number will
usually be 0.

HandleNum is the handle specifier from A to P (1 - 16).

Module is the position of the module in the rack from 1 to 16.

BitNum is the I/O point in the module from 1 to 4.

USAGE:

RELATED COMMAND:

EXAMPLES:

Handle Command Handle Command
A SB101 ~ SB104 I SB901 ~ SB904
B SB201 ~ SB204 J SB1001 ~ SB1004
C SB301 ~ SB304 K SB1101 ~ SB1104
D SB401 ~ SB404 L SB1201 ~ SB1204
E SB501 ~ SB504 M SB1301 ~ SB1304
F SB601 ~ SB604 N SB1401 ~ SB1404
G SB701 ~ SB704 O SB1501 ~ SB1504
H SB801 ~ SB804 P SB1601 ~ SB1604

While Moving Yes Default Value ---
In a Program Yes Default Format ---
Command Line Yes

Can be Interrogated No

Used as an Operand No Distributed Control Offset 100

CB Clear Bit

SB 3 Set output line 3
SB 1 Set output line 1
SB 602 Set output 2 on slave controller on handle F
206

LEGEND-MC User’s Manual
SC (Stop Code)
[Status]

DESCRIPTION:

The SC command allows the user to determine why a motor stops. The controller responds with the stop
code as follows:

ARGUMENTS: SC XYZW or ABCDEFGH

USAGE:

OPERAND USAGE:

_SCn contains the value of the stop code where n is an axis letter.

EXAMPLES:

CODE MEANING CODE MEANING

0 Motors are running, independent
mode

11 Stopped by selective Abort
Input

1 Motors stopped at commanded
independent position

40 Stopped at Latch Target

2 Decelerating or stopped by FWD
limit switch or software limit, FL

41 Latch Target failed because
of Limit Switch or Stop
Command

3 Decelerating or stopped by REV limit
switch or software limit, BL

42 Latch Target overrun
because of insufficient
distance

4 Decelerating or stopped by Stop
Command (ST)

50 Contour running

6 Stopped by Abort input 51 Contour Stop

7 Stopped by Abort command (AB) 99 MC timeout

8 Decelerating or stopped by Off-on-
Error (OE1)

100 Motors are running, vector
sequence

9 Stopped after Finding Edge (FE) 101 Motors stopped at
commanded vector

10 Stopped after Homing (HM)

While Moving Yes Default Value ---

In a Program Yes Default Format 3.0

Command Line Yes

Can be Interrogated No

Used as an Operand Yes Distributed Control QW Packet

Tom=_SCX Assign the Stop Code to variable Tom
207

LEGEND-MC User’s Manual
SH (Servo Here)
[General]

DESCRIPTION:

The SH command tells the controller to use the current motor position as the commanded position and to
enable servo control here. PID control starts when this command is issued.

This command can be useful when the position of a motor has been manually adjusted following a motor off
(MO) command.

The SH command is integrated with the RUN output of the LEGEND amplifier. If the RUN output does not
come ON within 100 msec, the controller returns to MO status and issues a command error. If this occurs,
check the power on L1, L2, and L3.

The action of performing MO then SH will clear any non critical amplifier alarms.

ARGUMENTS: SH XYZW or ABCDEFGH

USAGE:

RELATED COMMANDS:

EXAMPLES:

While Moving No Default Value ---

In a Program Yes Default Format ---

Command Line Yes

Can be Interrogated No

Used as an Operand No Distributed Control Specific Axis

"MO" Motor-off

SH Servo motor
208

LEGEND-MC User’s Manual
@SIN (Sine)
[Function]

DESCRIPTION:

@SIN returns the sin of a number or variable given in square brackets using units of degrees. Note that
the @SIN command is a function, which means that it does not follow the convention of the commands,
and does not require the underscore when used as an operand.

ARGUMENTS: @SIN [n] where

n is a number

USAGE:

EXAMPLES:

While Moving Yes Minimum n value -32768

In a Program Yes Maximum n value 32768

Not in a program Yes Default Value ---

Can be Interrogated No Default Format ---

Used as an Operand Yes Distributed Control No, Local

#TEST Program TEST

VAR1=60 Set variable

MG @SIN[VAR1] Display the value of the sine of VAR1

VAR2=@SIN[VAR1]+9 Perform calculation

EN End of program
209

LEGEND-MC User’s Manual
SP (Speed)
[Motion]

DESCRIPTION:

This command sets the slew speed for independent moves. The parameters input will be rounded down to
the nearest factor of 2 and the units of the parameter are in counts per second.

NOTE: Negative values will be interpreted as the absolute value.

ARGUMENTS: SP x, y, z, w or SPX=x or SP a, b, c, d, e, f, g, h where

x, y z, w, or a, b, c, d, e, f, g, h are unsigned integers

USAGE:

OPERAND USAGE:

_SPn contains the current speed setting where n is an axis letter.

RELATED COMMANDS:

EXAMPLES:

NOTE: SP is not a "mode" of motion like JOG (JG).

While Moving Yes Minimum n Value 0

In a Program Yes Maximum n Value 12,000,000

Command Line Yes Default Value 25000

Can be Interrogated Yes Default Format Position Format

Used as an Operand Yes Distributed Control Specific Axis

"AC" Acceleration

"DC" Deceleration

"PR" Position Relation

"BG" Begin

PR 2000 Specify position relative move

SP 5000 Specify speeds

BG Begin motion of all axes

AM After motion is complete
210

LEGEND-MC User’s Manual
@SQR (Square Root)
[Function]

DESCRIPTION:

@SQR returns the square root of a number or variable given in square brackets. Note that the @SQR command is a
function, which means that it does not follow the convention of the commands, and does not require the underscore
when used as an operand. This function will treat negative numbers as positive numbers.

ARGUMENTS: @SQR [n] where

n is a number

USAGE:

EXAMPLES:

While Moving Yes Minimum n value 0

In a Program Yes Maximum n value 2147483647.9999

Not in a program Yes Default Value ---

Can be Interrogated No Default Format ---

Used as an Operand Yes Distributed Control No, Local

#TEST Program TEST

VAR1=60 Set variable

MG @SQR[VAR1] Display the value of the sine of VAR1

VAR2=@SQR[VAR1]+9 Perform calculation

EN End of program
211

LEGEND-MC User’s Manual
ST (Stop)
[Motion]

DESCRIPTION:

The ST command stops commanded motion. The motor will come to a decelerated stop.

ARGUMENTS: ST XYZWS or ABCDEFGH where

XYZW or ABCDEFGH are axis designators. S indicates an interpolation sequence. No argument specifies
that motion on all axes is complete.

USAGE:

RELATED COMMANDS:

EXAMPLES:

NOTE: Use the after motion complete command, AM, to wait for motion to be stopped.

While Moving Yes Default Value ---

In a Program Yes Default Format ---

Command Line Yes

Can be Interrogated No

Used as an Operand No Distributed Control Specific Axis

"BG" Begin Motion

"MC" Wait for motion to complete

"DC" Deceleration rate

ST Stop motion
212

LEGEND-MC User’s Manual
TA (Tell Alarm)
[Status]

DESCRIPTION:

The TA command checks the alarm output of the amplifier on the side connector. If no alarm is present, the
controller returns 153 decimal, or 99 hex, which is the code for “No Alarm.” If the alarm output is active,
the controller requests the alarm code serially from the amplifier via the mating connector. See the Sigma
II documentation for all the possible alarm codes.

NOTE: The amplifier requires special firmware to transmit the alarm code to the controller. Consult the
factory for details. Firmware in the amplifier is not field upgradable.

ARGUMENTS: None

USAGE:

RELATED COMMANDS:

EXAMPLES:

While Moving Yes Default Value ---

In a Program Yes Default Format ---

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes Distributed Control Use SA

"TS" Tell Switches

"TC" Tell Code

"TB" Tell Byte

FAULT=_TA Store amp alarm into a user variable
213

LEGEND-MC User’s Manual
TB (Tell Status Byte)
[Status]

DESCRIPTION:

The TB command returns status information from the controller as a decimal number. Each bit of the status
byte denotes the following condition when the bit is set (high):

ARGUMENTS: None

USAGE:

OPERAND USAGE:

_TB contains the status byte.

EXAMPLES:

BIT STATUS

Bit 7 Executing program

Bit 6 N/A

Bit 5 Contouring

Bit 4 Executing error or limit switch routine

Bit 3 Input interrupt enabled

Bit 2 Executing input interrupt routine

Bit 1 N/A

Bit 0 Echo on

While Moving Yes Default Value ---

In a Program Yes Default Format 1.0

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes Distributed Control No, Local

TB Tell status information from the controller

65 Executing program and echo on (26 + 20 = 64 + 1 = 65)
214

LEGEND-MC User’s Manual
TC (Tell Code)
[Status]

DESCRIPTION:

The TC command returns a number between 1 and 255. This number is a code that reflects why a
command was not accepted by the controller. This command is useful when the controller halts execution
of a program at a command or when the response to a command is a question mark. Entering the TC
command will provide the user with a code as to the reason. After TC has been read, it is set to zero. TC 1
returns the text message as well as the numeric code.

NOTE:_ED returns the line number that last had an error.

ARGUMENTS: TC n

n=0 returns code only

n=1 returns code and message

CODE EXPLANATION
1 Unrecognized command

2 Command only valid from program

3 Command not valid in program

4 Operand error

5 Input buffer full

6 Number out of range

7 Command not valid while running

8 Command not valid when not running

9 Variable error

10 Empty program line or undefined label

11 Invalid label or line number

12 Subroutine more than 16 deep

13 JG only valid when running in jog mode

14 EEPROM check sum error

15 EEPROM write error

16 IP incorrect sign during position move or IP given during forced deceleration

17 ED, BN and DL not valid while program running

18 Command not valid when contouring

19 Application strand already executing

20 Begin not valid with motor off

21 Begin not valid while running

22 Begin not possible due to Limit Switch

24 Begin not valid because no sequence defined

25 Variable not given in IN command
215

LEGEND-MC User’s Manual
28 S operand not valid

29 Not valid during coordinated move

30 Sequence segment too short

31 Total move distance in a sequence > 2 billion

32 More than 511 segments in a sequence

33 VP or CR commands cannot be mixed with LI commands

41 Contouring record range error

42 Contour data being sent too slowly

46 Gear axis both master and follower

50 Not enough fields

51 Question mark not valid

52 Missing " or string too long

53 Error in {}

54 Question mark part of string

55 Missing [or []

56 Array index invalid or out of range

57 Bad function or array

58 Not a valid Command Operand (i.e._GNX)

59 Mismatched parentheses

60 Download error - line too long or too many lines

61 Duplicate or bad label

62 Too many labels

63 IF statement without ENDIF

65 IN command must have a comma

66 Array space full

67 Too many arrays or variables

71 IN only valid in task #0

80 Record mode already running

81 No array or source specified

82 Undefined Array

83 Not a valid number

84 Too many elements

90 Only X Y Z W valid operand

91 Amplifier not in run status

97 Bad binary command format

98 Binary Commands not valid in application program

99 Bad binary command number
216

LEGEND-MC User’s Manual
USAGE:

OPERAND USAGE:

_TC contains the value of the error code.

EXAMPLES:

100 Not valid when running ECAM

101 Improper index into ET (must be 0-256)

102 No master axis defined for ECAM

103 Master axis modulus greater than 256∗EP value

104 Not valid when axis performing ECAM

105 EB1 command must be given first

120 Bad Ethernet transmit

121 Bad Ethernet packet received

122 Ethernet input buffer overrun

123 TCP lost sync

124 Ethernet handle already in use

125 No ARP response from IP address

126 Closed Ethernet Handle Use IH

127 Illegal Modbus Function Code

128 IP Address Not valid

129 HC Already Executed

131 Amplifier Error

While Moving Yes Default Value ---

In a Program Yes Default Format 3.0

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes Distributed Control QW Packet

:GF32 Bad command

?TC Tell error code

001 Unrecognized command
217

LEGEND-MC User’s Manual
TD (Tell Dual (Auxiliary) Encoder)
[Status]

DESCRIPTION:

This command returns the current position of the dual (auxiliary) encoder.

ARGUMENTS: TD XYZW or ABCDEFGH

USAGE:

OPERAND USAGE:

_TDn contains the dual encoder position where n is an axis letter.

RELATED COMMANDS:

EXAMPLES:

While Moving Yes Default Value 0

In a Program Yes Default Format Position Format

Command Line Yes

Can be Interrogated No

Used as an Operand Yes Distributed Control QW Packet

"DE" Dual Encoder

:PF 7 Position format of 7

:TD Return Dual encoder

0000200

DUAL=_TDX Assign the variable, DUAL, the value of TD
218

LEGEND-MC User’s Manual
TE (Tell Error)
[Status]

DESCRIPTION:

This command returns the current position error of the motor. It is up-dated every servo cycle.

ARGUMENTS: TE XYZW or ABCDEFGH

USAGE:

OPERAND USAGE:

_TEn contains the value of the position error where n is an axis letter.

RELATED COMMANDS:

EXAMPLES:

NOTE: Under normal operating conditions with servo control, the position error should be small. The position error is typ-
ically largest during acceleration.

While Moving Yes Minimum Value -2147483648

In a Program Yes Maximum Value 2147483647

Command Line Yes Default Value 0

Can be Interrogated No Default Format Position Format

Used as an Operand Yes Distributed Control QW Packet

"ER" Error Limit

#POSERR Excessive Position Error Special Label

TE Return position error

00005

Error=_TEX Sets the variable, Error, with the position error
219

LEGEND-MC User’s Manual
TH (Tell Handle)
[Status]

DESCRIPTION:

This command returns a formatted text display including the controllers MAC address, IP Address, and the IP
address of the device connected to each of the handles. Also included are the port type and master / slave
configuration.

This command is most useful from an external device, such as a terminal window or other program that can
interpret the information.

ARGUMENTS: none

USAGE:

RELATED COMMANDS:

EXAMPLES:

While Moving Yes Default Value n/a

In a Program Yes Default Format formatted text

Command Line Yes

Can be Interrogated No

Used as an Operand No Distributed Control No, Local

"IH" Internet Handle

TH Tell Handle
220

LEGEND-MC User’s Manual
TI (Tell Inputs)
[I/O]

DESCRIPTION:

This command returns the state of all 8 of the general digital inputs. Response is a decimal number which
when converted to binary represents the status of all 8 digital inputs.

When using this command to access I/O on a slave controller in distributed control mode, use it with the
handle for outbound master commands. Do not use the handle which is for incoming slave update packets.
For example, if a slave is connected on handles E and F, reference the I/O for the slave on handle E.

DISTRIBUTED CONTROL:

ARGUMENTS: TI n where

n is an optional integer which indicates the handle as described above.

USAGE:

OPERAND USAGE:

_TI contains the status byte of the input block. This can be masked to return only specified bit information.

BIT TI PIN
Bit 7 Input 8 20
 Bit 6 Input 7 19
 Bit 5 Input 6 42
 Bit 4 Input 5 43
 Bit 3 Input 4 44
 Bit 2 Input 3 45
 Bit 1 Input 2 17
 Bit 0 Input 1 18

Handle Command Handle Command
A TI 100 I TI 900
B TI 200 J TI 1000
C TI 300 K TI 1100
D TI 400 L TI 1200
E TI 500 M TI 1300
F TI 600 N TI 1400
G TI 700 O TI 1500
H TI 800 P TI 1600

While Moving Yes Default Value ---

In a Program Yes Default Format 3.0

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes Distributed Control Use SA
221

LEGEND-MC User’s Manual
EXAMPLES:
TI

08 Input 4 is high, others low (0000 1000)

TI

00 All inputs low (0000 0000)

Input =_TI Sets the variable, Input, with the TI value

TI

255 All inputs high (1111 1111)

SAC=”TI” Send TI command to controller on handle C

VAR=_SAC Store the returned value to a variable
222

LEGEND-MC User’s Manual
TIME (Time Keyword)
[General]

DESCRIPTION:

The TIME operand contains the value of the internal free running, real time clock. The returned value
represents the number of servo loop updates and is based on the TM command. The default value for the
TM command is 1000. With this update rate, the operand TIME will increase by 1 count every update of
approximately 1000usec. Note that a value of 1000 for the update rate (TM command) will actually set an
update rate of 1/1024 seconds. Thus the value returned by the TIME operand will be off by 2.4% of the
actual time.

The clock is reset to 0 with a standard reset or a master reset.

The keyword, TIME, does not require an underscore (_) as with the other operands.

USAGE:

EXAMPLES:

Used as an Operand Yes (without underscore) Minimum value -2147483647

Can be Interrogated No Maximum value 2147483647

Format TIME

Distributed Control No, Local

MG TIME Display the value of the internal clock

Myvar = TIME Assign TIME to Myvar

Loop Loop label

 X = X + 1 Increment counter

JP # Loop, X, <500 Check if counter is less than 500

MG “Duration =”, TIME - Myvar Print message
223

LEGEND-MC User’s Manual
TL (Torque Limit)
[Setting]

DESCRIPTION:

The TL command sets the limit on the motor command output. For example, TL of 5 limits the motor
command output to 5 volts. Maximum output of the motor command is 9.998 volts.

ARGUMENTS: TL x, y, z, w or TLX=x or TL a, b, c, d, e, f, g, h where

x, y z, w, or a, b, c, d, e, f, g, h are unsigned integers

USAGE:

OPERAND USAGE:

_TLn contains the value of the torque limit where n is an axis letter.

EXAMPLES:

While Moving Yes Minimum n Value 0

In a Program Yes Maximum n Value 9.9988

Command Line Yes Default Value 9.9988

Can be Interrogated Yes Default Format 1.4

Used as an Operand Yes Distributed Control Specific Axis

TL 1 Limit X-axis torque to 1volt

TL ? Return torque limit

1.0000
224

LEGEND-MC User’s Manual
TM (Time Base)
[Configuration]

DESCRIPTION:

The TM command sets the sampling period of the control loop. Changing the sampling period will
uncalibrate the speed and acceleration parameters. A negative number turns off the internal clock allowing
for an external source to be used as the time base. The units of this command are µsec. If a multi-axis
system is configured the TM value is set in all controllers if set in the master.

ARGUMENTS: TM n where

n is an integer in microseconds with a resolution of 125 microseconds.

USAGE:

OPERAND USAGE:

_TM contains the value of the sample time.

EXAMPLES:

NOTE: Although this manual refers to times in msec, think in terms of servo cycles. This includes
everything from a WT command to SP commands.

While Moving Yes Minimum n Value 250

In a Program Yes Maximum n Value 20,000

Command Line Yes Default Value 1000

Can be Interrogated Yes Default Format 5.0

Used as an Operand Yes Distributed Control No, Local

TM 250 Set sample rate to 250 µsec (This will multiply all
speeds by four and all acceleration by eight)

TM 1000 Return to default sample rate
225

LEGEND-MC User’s Manual
TP (Tell Position)
[Status]

DESCRIPTION:

This command returns the current position of the motor in quadrature counts.This value is up-dated every
servo cycle.

ARGUMENTS: TP XYZW or ABCDEFGH

USAGE:

OPERAND USAGE:

_TPn contains the current position value where n is an axis letter.

EXAMPLES:

While Moving Yes Default Value n/a

In a Program Yes Default Format Position Format

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes Distributed Control QW Packet

:PF 7 Position format of 7

:TP Return position

0000200

PF-6.0 Change to hex format

TP Return in hex

$0000C8

Position=_TPX Assign the variable, Position, the value of TP
226

LEGEND-MC User’s Manual
TR (Trace Mode)
[Debug]

DESCRIPTION:

The TR command causes each instruction in a program to be sent out the communications port prior to
execution. TR1 enables this function and TR0 disables it. The trace command is useful in debugging
programs. It is not recommended to leave the TR command on for long durations (over 30 seconds)
because it takes much longer to output the data from the controller than to execute it, hence, program
execution will be affected. If no program lines are coming from the controller, issue “MG_XQn” or
“MG_HXn” to see what line the controller is on. If the controller is at a trippoint, no lines will be output.
Another way to take advantage of this command is to insert it in your program at a location previous to a
suspected trouble spot (TR1) and just after the trouble spot (TR0). This way the trace will only show
program lines that pertain to the debugging process.

ARGUMENTS: TR n where

n=0 or 1

0 disables function

1 enables function

USAGE:
While Moving Yes Default Value 0

In a Program Yes Default Format ---

Command Line Yes

Can be Interrogated No

Used as an Operand Yes Distributed Control No, Local
227

LEGEND-MC User’s Manual
TS (Tell Switches)
[Status]

DESCRIPTION:

TS returns the state of the Home switch, Forward and Reverse Limit switch, error conditions, motion
condition and motor state. The value returned by this command is decimal and represents an 8 bit value
(decimal value ranges from 0 to 255). Each bit represents the following status information.

NOTE: The value for bits 1, 2 and 3 depend on the limit switch and home switch configuration (see
CN command). For active low configuration (default), these bits are ‘1’ when the switch is inactive
and ‘0’ when active. For active high configuration, these bits are ‘0’ when the switch is inactive and
‘1’ when active.

ARGUMENTS: TS XYZW or ABCDEFGH

USAGE:

OPERAND USAGE:

_TSX contains the current status of the switches.

Bit Status

Bit 7 Axis in motion if high

Bit 6 Error limit exceeded if high

Bit 5 Motor off if high

Bit 4 Amplifier OK if high

Bit 3 Forward Limit inactive if high

Bit 2 Reverse Limit inactive if high

Bit 1 State of home switch

Bit 0 Latch not armed if high

While Moving Yes Default Value ---

In a Program Yes Default Format 3.0

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes Distributed Control Specific Axis
228

LEGEND-MC User’s Manual
EXAMPLES:

Assigns value of TS to the variable V1

V1=

015 (returned value)

Decimal value corresponding to bit pattern 00001111

X axis not in motion (bit 7 has value of 0)

X axis error limit not exceeded (bit 6 has value of 0)

X axis motor is on (bit 5 has value of 0)

X axis forward limit is inactive (bit 3 has value of 1)

X axis reverse limit is inactive (bit 2 has value of 1)

X axis home switch is high (bit 1 has value of 1)

X axis latch is not armed (bit 0 has value of 1)
229

LEGEND-MC User’s Manual
TT (Tell Torque)
[Status]

DESCRIPTION:

The TT command reports the value of the analog servo command output signal, which is a number between
-9.998 and 9.998 volts. This value is up-dated every servo cycle.

ARGUMENTS: TT XYZW or ABCDEFGH

USAGE:

OPERAND USAGE:

_TTn contains the value of the torque where n is an axis letter.

RELATED COMMANDS:

EXAMPLES:

While Moving Yes Minimum Value -9.9988

In a Program Yes Maximum Value 9.9988

Command Line Yes Default Value n/a

Can be Interrogated Yes Default Format 1.4

Used as an Operand Yes Distributed Control QW Packet

"TL" Torque Limit

V1=_TT Assigns value of TT to variable, V1

TT Report torque

-0.2843 Torque is -.2843 volts
230

LEGEND-MC User’s Manual
TV (Tell Velocity)
[Status]

DESCRIPTION:

The TV command returns the actual velocity in units of quadrature count/s. The value returned includes the
sign. This value is averaged over 256 servo cycles.

ARGUMENTS: TV XYZW or ABCDEFGH

USAGE:

OPERAND USAGE:

_TVn contains the value for the velocity where n is an axis letter.

EXAMPLES:

While Moving Yes Minimum Value -12,000,000

In a Program Yes Minimum Value 12,000,000

Command Line Yes Default Value n/a

Can be Interrogated No Default Format 8.0

Used as an Operand Yes Distributed Control QW Packet

VELX=_TV Assigns value of velocity to the variable VELX

TV Returns the velocity

0003420
231

LEGEND-MC User’s Manual
TW (Time Wait)
[Setting]

DESCRIPTION:

The TW n command sets the timeout in msec to declare an error if the MC command is active and the motor
is not at or beyond the actual position within n msec after the completion of the motion profile. If a timeout
occurs, then the MC trippoint will clear and the stopcode will be set to 99. An application program will jump
to the special label #MCTIME. If included, the RE command should be used to return from the #MCTIME
subroutine.

ARGUMENTS: TW x, y, z, w or TWX=x or TW a, b, c, d, e, f, g, h where

x, y z, w, or a, b, c, d, e, f, g, h are signed integers

n specifies timeout in msec, -1 disables the timeout

USAGE:

OPERAND USAGE:

_TW contains the timeout in msec for the MC command .

RELATED COMMANDS:

While Moving Yes Minimum n Value -1

In a Program Yes Maximum n Value 32766

Command Line Yes Default Value 32766

Can be Interrogated Yes Default Format

Used as an Operand Yes Distributed Control Specific Axis

"MC" Motion Complete - "In Position"
232

LEGEND-MC User’s Manual
UL (Upload)
[General]

DESCRIPTION:

The UL command transfers data from the LEGEND-MC to a host computer. Programs are sent without
line numbers. The Uploaded program will be followed by a <control>Z or a \ as an end of Text marker.

ARGUMENTS: None

USAGE:

OPERAND USAGE:

When used as an operand, _UL gives the number of available variables. The total number of variables is
126.

RELATED COMMAND:

EXAMPLES:

While Moving Yes Default Value n/a

In a Program No Default Format n/a

Command Line Yes

Can be Interrogated No

Used as an Operand Yes Distributed Control No, Local

"DL" Download

UL; Begin upload

#A Line 0

NO This is an Example Line 1

NO Program Line 2

EN Line 3

<cntrl>Z Terminator
233

LEGEND-MC User’s Manual
VA (Vector Acceleration)
[Motion]

DESCRIPTION:

This command sets the acceleration rate of the vector in a coordinated motion sequence.

ARGUMENTS: VA n where

n is an unsigned integer. The parameter input will be rounded down to the nearest factor of 1024. The units
of the parameter is counts per second squared.

USAGE:

OPERAND USAGE:

_VA contains the value of the vector acceleration.

RELATED COMMANDS:

EXAMPLES:

While Moving Yes Minimum n Value 1024

In a Program Yes Maximum n Value 67107840

Command Line Yes Default Value 256000

Can be Interrogated Yes Default Format Position Format

Used as an Operand Yes Distributed Control No, Local

"VS" Vector Speed

"VP" Vector Position

"VE" End Vector

"VM" Vector Mode

"BGS" Begin Sequence

"VD" Vector Deceleration

"VS" Vector smoothing constant - S-curve

VA 1024 Set vector acceleration to 1024 counts/sec2

VA ? Return vector acceleration

00001024

VA 20000 Set vector acceleration

VA ?

0019456 Return vector acceleration

ACCEL=_VA Assign variable, ACCEL, the value of VA
234

LEGEND-MC User’s Manual
VD (Vector Deceleration)
[Motion]

DESCRIPTION:

This command sets the deceleration rate of the vector in a coordinated motion sequence.

ARGUMENTS: VD n where

n is an unsigned integer. The parameter input will be rounded down to the nearest factor of 1024. The units
of the parameter is counts per second squared.

USAGE:

OPERAND USAGE:

_VD contains the value of the vector deceleration.

RELATED COMMANDS:

EXAMPLES:

While Moving Yes Minimum n Value 1024

In a Program Yes Maximum n Value 67107840

Command Line Yes Default Value 256000

Can be Interrogated Yes Default Format Position Format

Used as an Operand Yes Distributed Control No, Local

"VA" Vector Acceleration

"VS" Vector Speed

"VP" Vector Position

"VE" Vector End

"VM" Vector Mode

"BGS" Begin Sequence

"VT" Smoothing constant - S-curve

#VECTOR Vector Program Label

VMXY Specify plane of motion

VA1000000 Vector Acceleration

VD 5000000 Vector Deceleration

VS 2000 Vector Speed

VP 10000, 20000 Vector Position

VE End Vector

BGS Begin Sequence
235

LEGEND-MC User’s Manual
VE (Vector End)
[Motion]

DESCRIPTION:

VE is required to specify the end segment of a coordinated move sequence. VE follows the final VP or CR
command in a sequence. VE is equivalent to the LE command. If a VE command is not issued before the
controller runs all the linear segments, motion will stop instantaneously.

ARGUMENTS: None

USAGE:

OPERAND USAGE:

_VE contains the length of the vector in counts.

RELATED COMMANDS:

EXAMPLES:

While Moving Yes Default Value -

In a Program Yes Default Format -

Command Line Yes Distributed Control No, Local

"VM" Vector Mode

"VS" Vector Speed

"VA" Vector Acceleration

"VD" Vector Deceleration

"VP" Vector Position

"BGS" Begin Sequence

"CS" Clear Sequence

VM XY Vector move in XY

VP 1000,2000 Linear segment

VP 0,0 Linear segment

VE End sequence

BGS Begin motion
236

LEGEND-MC User’s Manual
VF (Variable Format)
[General]

DESCRIPTION:

The VF command allows the variables and arrays to be formatted for number of digits before and after the
decimal point. When displayed, the value m represents the number of digits before the decimal point, and
the value n represents the number of digits after the decimal point. When in hexadecimal, the string will be
preceded by a $. Hex numbers are displayed as 2's complement with the first bit used to signify the sign.

If a number exceeds the format, the number will be displayed as the maximum possible positive or
negative number (i.e. 999.99, -999, $8000 or $7FF).

ARGUMENTS: VF m.n where

m and n are unsigned numbers. A negative m specifies hexadecimal format.

USAGE:

OPERAND USAGE:

_VF contains the value of the format for variables and arrays.

EXAMPLES:

While Moving Yes Minimum m Value -8

In a Program Yes Maximum m Value 10

Command Line Yes Default m Value 10

Can be Interrogated Yes Minimum n Value 0

Used as an Operand Yes Maximum n Value 4

Default n Value 4

Default Format 2.1

Distributed Control No, Local

VF 5.3 Sets 5 digits of integers and 3 digits after the
decimal point

VF 8.0 Sets 8 digits of integers and no fractions

VF -4.0 Specify hexadecimal format with 4 bytes to
the left of the decimal
237

LEGEND-MC User’s Manual
VR (Vector Speed Ratio)
[Motion]

DESCRIPTION:

The VR sets a ratio to be used as a multiplier of the current vector speed. The vector speed can be set by the
command VS or the operators < and > used with CR, VP and LI commands. VR takes effect immediately
and will ratio all the following vector speed commands. VR doesn't ratio acceleration or deceleration, but
the change in speed is accomplished by accelerating or decelerating at the rate specified by VA and VD.

ARGUMENTS: VR n where

n is an integer with a resolution of .0001.

USAGE:

OPERAND USAGE:

_VR contains the vector speed ratio.

RELATED COMMANDS:

EXAMPLES:

NOTE: UseVR for feedrate override, when specifying the speed of individual segments using the
operator ‘<’.

While Moving Yes Minimum n Value 0.0001

In a Program Yes Maximum n Value 10

Command Line Yes Default Value 1

Default Format -

Distributed Control No, Local

"VS" on page Vector Speed

#A Vector Program

VMXY Vector Mode

VP 1000,2000 Vector Position

VE End Sequence

VS 2000 Vector Speed

BGS Begin Sequence

AMS After Motion

JP#A Repeat Move

#SPEED Speed Override

VR@AN[1]*.1 Read analog input compute ratio

JP#SPEED Loop

XQ#A,0; XQ#SPEED,1 Execute task 0 and 1 simultaneously
238

LEGEND-MC User’s Manual
VS (Vector Speed)
[Motion]

DESCRIPTION:

The VS command specifies the speed of the vector in a coordinated motion sequence in either the LM or
VM modes. VS may be changed during motion.

Vector Speed can be calculated by taking the square root of the sum of the squared values of speed for each
axis specified for vector or linear interpolated motion.

ARGUMENTS: VS n where

n is an unsigned even number. The units are counts per second.

USAGE:

OPERAND USAGE:

_VS contains the vector speed.

RELATED COMMANDS:

EXAMPLES:

NOTE: Vector speed can be attached to individual vector segments. For more information, see description of VP, CR, and
LI commands.

While Moving Yes Minimum n Value 2

In a Program Yes Maximum n Value 12,000,000

Command Line Yes Default Value 25000

Default Format ---

Distributed Control No, Local

"VA" Vector Acceleration

"VP" Vector Position

"LM" Linear Interpolation

"VM" Vector Mode

"BGS" Begin Sequence

"VE" Vector End

VS 2000 Define vector speed

VS ? Return vector speed

002000
239

LEGEND-MC User’s Manual
VT (Vector Time Constant)
[Motion]

DESCRIPTION:

The VT command filters the acceleration and deceleration functions in vector moves of VM, LM type to
produce a smooth velocity profile. The resulting profile, known as Smoothing, has continuous acceleration
and results in reduced mechanical vibrations. VT sets the bandwidth of the filter, where 1 means no filtering
and 0.004 means maximum filtering. Note that the filtering results in longer motion time.

ARGUMENTS: VT n where

n is an unsigned number with a resolution of 1/256.

USAGE:

OPERAND USAGE:

_VT contains the vector time constant.

RELATED COMMANDS:

EXAMPLES:

While Moving Yes Minimum n Value 0.004

In a Program Yes Maximum n Value 1.000

Command Line Yes Default Value 1.0

Default Format 1.4

Distributed Control No, Local

"IT" Independent Time Constant for smoothing
independent moves

VT 0.8 Set vector time constant

VT ? Return vector time constant

0.8
240

LEGEND-MC User’s Manual
WC (Wait for Contour)
[Program Flow]

DESCRIPTION:

The WC command acts as a flag in the Contour Mode. After this command is executed, the controller does
not receive any new data until the internal contour data buffer is ready to accept new commands. This
command prevents the contour data from overwriting itself in the contour data buffer.

USAGE:

RELATED COMMANDS:

EXAMPLES:

While Moving Yes Default Value ---

In a Program Yes Default Format ---

Command Line Yes

Can be Interrogated No

Used as an Operand No Distributed Control No, Local

"CM" Contour Mode

"CD" Contour Data

"DT" Contour Time

CM Specify contour mode

DT 4 Specify time increment for contour

CD 200 Specify incremental position

WC Wait for contour data to complete

CD 100

WC Wait for contour data to complete

DT 0 Stop contour

CD 0 Exit mode
241

LEGEND-MC User’s Manual
WT (Wait)
[Trippoint]

DESCRIPTION:

The WT command is a trippoint used to time events. After this command is executed, the controller will
wait for the number of samples specified before executing the next command. If the TM command has not
been used to change the sample rate from 1 msec, then the units of the Wait command are milliseconds.

ARGUMENTS: WT n where

n is an integer

USAGE:

EXAMPLES:

Assume that 10 seconds after a move is over a relay must be closed.

While Moving Yes Minimum Value 0

In a Program Yes Maximum Value 2147483647

Command Line Yes Default Value ---

Can be Interrogated No Default Format ---

Used as an Operand No Distributed Control No, Local

#A Program A

PR 50000 Position relative move

BG Begin the move

AM After the move is over

WT 10000 Wait 10 seconds

SB 1 Turn on relay

EN End Program

WT VAR1 Wait amount of time specified in VAR1
242

LEGEND-MC User’s Manual
XQ (Execute Program)
[General]

DESCRIPTION:

The XQ command begins execution of a program residing in the program memory of the controller.
Execution will start at the label or line number specified. Four programs may be executed simultaneously
to perform multitasking. The XQ command cannot be used to execute a thread that is already running.

ARGUMENTS: XQ #A,n XQm,n where

A is a program label of up to seven characters

m is a line number

n is the thread number 0 through 3

NOTE: The arguments for the command, XQ, are optional when issued via external device. If no
arguments are given, the first line of the program will be executed as thread 0.

USAGE:

OPERAND USAGE:

_XQn contains the current line number of execution for thread n, and -1 if thread n is not running.

RELATED COMMANDS:

EXAMPLES:

While Moving Yes Default Value n = 0

In a Program Yes Default Format ---

Command Line Yes

Can be Interrogated No

Used as an Operand Yes Distributed Control Use SA

"HX" on page Halt execution

XQ Start execution issued from serial port or
Ethernet to start at the top of the program as
thread 0.

XQ #data,3 Start execution at label data, thread three
243

LEGEND-MC User’s Manual
ZS (Zero Subroutine Stack)
[Program Flow]

DESCRIPTION:

The ZS command is only valid from within an application program and is used to avoid returning from an
interrupt (either input or error). ZS alone returns the stack to its original condition. ZS1 adjusts the stack to
eliminate one return. This turns the jump to subroutine into a jump.

ARGUMENTS: ZS n where

0 returns stack to original condition

1 eliminates one return on stack

USAGE:

OPERAND USAGE:

_ZSn contains the stack level for the specified thread where n = 0 or 1. The response, an integer between
zero and seven, indicates zero for beginning condition and 15 for the deepest value.

EXAMPLES:

While Moving Yes Minimum value 0

In a Program Yes Maximum value 16

Command Line No Default Value n/a

Can be Interrogated Yes Default Format n/a

Used as an Operand Yes Distributed Control No, Local

II1 Input Interrupt on 1

#A;JP #A;EN Main program

#ININT Input Interrupt

MG "INTERRUPT" Print message

S=_ZS Interrogate stack

S= Print stack

ZS Zero stack

S=_ZS Interrogate stack

S= Print stack

EN End
244

LEGEND-MC User’s Manual

SMC3010 COMMAND INTERROGATION LIST (1.0c firmware & up)

Command Definition units min max default
_AB Status of abort input status 0=Aborted 1=OK n/a
_ACx Axis acceleration rate counts/sec2 1024 67107840 256000
_AFx Analog or digital feedback? status 0=DIGITAL 1=ANALOG 0
_ALx High speed position capture status status 0=TRIPPED 1=NOT YET 0
_AV Distance from the start of vector sequence counts 0 2147483647 0

_BGx Is axis in motion? status 0=NO 1=YES 0=NO
_BLx Reverse software limit counts -2147483648 2147483647 -2147483648
_BN Serial number of the SMC3010 n/a 1 65535 n/a
_CEx Type of encoder selected configuration 0 15 0
_CF Returns the default port that unsolicited

messages are directed to (ASCII)
configuration 65 = 'A' 83 = 'S' 83 = 'S'

_CM Is the contour mode buffer full? status 0=NO 1=YES 0=NO
_CN Returns the configuration of the limit

switches
configuration -1 = Active Low 1 = Active High -1 = Active Low

_CN1 Returns the configuration of the home input configuration -1 = Active Low 1 = Active High -1 = Active Low

_CN2 Returns the configuration of the latch input configuration -1 = Active Low 1 = Active High -1 = Active Low

_CS Current segment number for Vector Mode segment 0 511 0

_CW Port #1 data adjustment (MG from prog,
chars have bit 8 set)

status 1=SET 2=OFF 2=OFF

_DA Number of available arrays quantity 0 14 14
_DB State of Dynamic Brake Setting configuration 0 = OFF 1 = ON 1
_DCx Axis deceleration rate counts/sec2 1024 67107840 256000
_DEx Encoder position of the auxiliary encoder counts -2147483648 2147483647 n/a
_DL Number of available labels quantity 0 254 254
_DM Number of available array locations quantity 0 2000 2000
_DPx Current encoder position of axis counts -2147483648 2147483647 n/a
_DT Time interval for contour mode 2N mSec 0 8 0
_DVx Is the axis using dual loop PID? status 0=NO 1=YES 0=NO
_EB Is CAM mode enabled? status 0=NO 1=YES 0=NO
_EC returns the current index into the cam table pointer 0 359 0

_ED The last line that caused a CMDERR line number 0 999 n/a
_EGx Is CAMMING axis engaged? status 0=NO 1=YES 0=NO
_EMx Cam cycle for camming (master or slave) counts 0 2147483647 0
_EO Is echo mode on? status 0=NO 1=YES 0=NO
_EP CAMMING interval (resolution) counts 1 32767 256

_EQx Status of ECAM slave status 0 3 0
_ERx Axis following error limit counts 0 32767 16384
_ES Ellipse scale ratio n/a 0.0001 1 1
_FAx Axis acceleration feedforward constant 0 8191 0
_FLx Forward software limit counts -2147483648 2147483647 2147483647
_FVx Axis velocity feedforward constant 0 8191 0
_GRx Gear ratio of the axis constant -127.9999 127.9999 0
_HC Status of Handle Connect Command status 0 = FAIL 2 = SUCCESS 0

_HMx State of the home switch status 0=ACTIVE 1=INACTIVE n/a
_HR Configuration of Handle Restore Command configuration 0 = OFF 1 = SET 0

_HW Configuration of Handle Wait Command configuration 0 = OFF 1 = SET 1
_HXx Thread info (x is thread 0 through 3) 0=NOT 1=RUNNING 2=AT TRIPPOINT n/a
245

LEGEND-MC User’s Manual

Command Definition units min max default

_IA Returns the IP address as a 32 bit signed
number

address 0 2147483647 0

_IA1 Returns the Ethernet retry time mSec 0 2147483647 250
_IA2 Returns the number of available handles handles 0 6 6
_IA3 Returns the number of the handle using this

operand
handle 0 5 n/a

_IHh0 Returns the IP address as a 32 bit signed
number ("h" is handle "A" - "P")

address -2147483648 2147483647 -1

_IHh1 Returns the slave port number number 0 65535 0
_IHh2 Returns the handle status (See IH command

description)
status -2 2 0

_IHh3 Returns ARP status status 0 = Successful 1 = Failed n/a
_II Returns the bitmask of all inputs that are

selected as interrupts
configuration 0 127 0

_ILx Integrator limit of the axis voltage -9.9988 9.9988 9.9988
_IPX Current encoder position of axis counts -2147483648 2147483647 n/a
_ITx S curve smoothing function value constant 0.004 1 1
_JGx Jog speed for that axis counts/sec 0 8000000 25000
_KDx Derivative Constant for PID loop constant 0 4095.875 64
_KIx Integrator for PID loop constant 0 2047.875 0
_KPx Proportional Constant for PID loop constant 0 1023.875 6
_LC Status of Lock Controller command configuration 0 = UNLOCKED 2 = ALL LOCKED 0-Jan
_LE Length of the vector counts 0 2147483647 0
_LFx Forward Limit Switch status 0 = ACTIVE 1 = INACTIVE n/a
_LM Number of free locations in linear mode

buffer
n/a 0 511 n/a

_LRx Reverse Limit Switch status 0 = ACTIVE 1 = INACTIVE n/a
_LS The total number of program lines lines 0 999 0
_LTx Stop distance set in the Latch Target

Command
counts -2147483648 2147483647 0

_LZ Serial port leading zero removal status 0 = OFF 1 = ON 0
_MW Returns the current configuration of the

Modbus Wait Command
configuration 0 = OFF 1 = ON 1

_MOx Current state of motor, enabled or not status 0=ENABLED 1=DISABLED 0 / 1
_MTx Type of motor configuration -1 1 1
_NBx Returns the Notch Filter Bandwidth Hertz 0 62 0.5
_NFx Returns the Notch Frequency Hertz 0 255 0
_NZx Returns the Notch Zero Hertz 0 62 0
_OCx Returns the state of the Output Compare

Function
status 0 1 n/a

_ODx Returns the state of the Output Compare
Function Auxiliary Encoder

status 0 1 n/a

_OEx Indicates if servo enable signal will shut off if
"_Erx" is exceeded

status 0=NO 1=YES 0=NO

_OFx Axis command offset voltage -9.9988 9.9988 0
_OPx Entire byte or word of output port (x = output

bank 0-3)
byte or word 0 65535 0

P1CD Status code of serial port status -1 3 n/a
P1CH The last character received from serial port character 0 255 n/a

P1NM The last number received from serial port number -2147483648 2147483647 n/a
P1ST The last string received from serial port string 6 chars max n/a
_PAx Last commanded absolute position if

moving, otherwise current position
counts -2147483648 2147483647 0
246

LEGEND-MC User’s Manual
Command Definition units min max default
_PF Encoder position format (see PF command) configuration -8.4 10.4 10.4

_PRx Current incremental distance to move (Even
if move set by PA)

counts -2147483648 2147483647 0

_QL Returns the last position latched on the
auxiliary encoder

counts -2147483648 2147483647 0

_RC Status of record mode status 0= NOT
RECORDING

1=RECORDING 0= NOT
RECORDING

_RD Array index that record mode will use next index 0 7999 0

_RLx Encoder value of last latched position counts -2147483648 2147483647 0
_RPx Current commanded position of the motor counts -2147483648 2147483647 0
_SCx The Stop Code of the axis code 0 150 1
_SPx Speed parameter of the axis counts/sec 0 8000000 25000
_TA Alarm code from LEGEND amplifier

(requires special amp firmware
code 0 255 153

_TB Status information from controller byte 0 255 1
_TC1 Error code and message from controller number 0 255 0
_TDx Current auxiliary encoder position counts -2147483648 2147483647 n/a
_TEx Difference between commanded & actual

axis position
counts -2147483648 2147483647 n/a

_TIx 8 inputs as a decimal or hex value (x = input
bank 0-7)

byte 0 255 n/a

TIME Counter since SMC2000 powered on servo cycles 0 2147483647 0
_TLx Torque limit of axis voltage 0 9.9988 9.9988
_TM Servo update cycle for all axes uSec 250 20000 1000
_TN Position of first tangent point counts -2147483648 2147483647 0
_TPx Current encoder position of axis counts -2147483648 2147483647 n/a
_TSx Status of switches for axis byte 0 255 n/a
_TTx Current output voltage to amplifier voltage -9.9988 9.9988 0
_TVx Velocity of axis (averaged over 256 servo

cycles)
counts/sec 0 8000000 n/a

_TWx Time limit that program will wait for axis to
get to target position (MCx)

milliseconds -1 32766 32766

_UL Number of variables available n/a 0 254 254
_VA acceleration value for vector mode counts/sec2 1024 68431360 256000
_VD Deceleration value for vector mode counts/sec2 1024 68431360 256000
_VE Length of vector (all moves in coordinated

move sequence)
counts 0 2147483647 0

_VF Setting of variable formatting n/a 0 10.4 10.4
_VM Number of free locations in vector mode

buffer
n/a 0 511 511

_VPx Absolute coordinate of the axis in the last
segment

counts -2147483648 2147483647 0

_VR Vector speed ratio n/a 0 10 1
_VS Vector Speed counts/sec 2 8000000 25000
_VT S curve smoothing value for vector mode constant 0.004 1 1

_XQx Current line number being executed (x =
thread #)

line number -1 499 n/a

_ZS Current subroutine depth number 0 16 n/a
247

LEGEND-MC User’s Manual
NOTES:
248

LEGEND-MC User’s Manual
5 Programming Basics
Introduction

The LEGEND-MC provides over 100 commands for specifying motion and machine parameters.
Commands are included to initiate action, interrogate status and configure the digital filter.

The LEGEND-MC instruction set is BASIC-like and easy to use. Instructions usually consist of two
uppercase letters that normally correspond phonetically with the appropriate function. For example, the
instruction BG begins motion, and ST stops motion.

Commands can be sent "live" for immediate execution by the LEGEND-MC, or an entire group of
commands (a program) can be downloaded into the LEGEND-MC memory for execution at a later time.
Combining commands into groups for later execution is referred to as Applications Programming and is
discussed in the following chapter.

This section describes the LEGEND-MC instruction set and syntax. A complete listing of all LEGEND-
MC instructions is included in the command reference section.

Program Maximums

Command Syntax
LEGEND-MC instructions are represented by two ASCII upper case characters followed by applicable
arguments. A space may be inserted between the instruction and arguments. A semicolon or <enter> is
used to terminate the instruction for processing by the LEGEND-MC command interpreter.

For example, the command

PR 4000 <enter> Position Relative

PR is the two character instruction for Position Relative. 4000 is the argument which represents the
required position value in counts. The <enter> terminates the instruction. The space between PR and
4000 is optional.

For specifying data for the X,Y,Z and W axes, commas are used to separate the axes and preserve axis
order as X,Y,Z and W. If no data is specified for an axis, a comma is still needed as shown in the
examples below. If no data is specified for an axis, the previous value is maintained. The space between
the data and instruction is optional. For the LEGEND-MC, the eight axes are referred to
A,B,C,D,E,F,G,H where X,Y,Z,W and A,B,C,D may be used interchangeably.

To view the current values for each command, specify the command followed by a ? for each axis
requested. The LEGEND-MC provides an alternative method for specifying data.

Here data is specified individually using a single axis specified such as X,Y,Z or W (or A,B,C,D,E,F,G or
H for the LEGEND-MC). An equal sign is used to assign data to that axis. For example:
PRZ=1000 Sets the Z axis data as 1000

Commands per line Until 80 characters
Labels among all threads 126
Lines among all threads 500
Subroutine nesting level 16
Threads 4

IMPORTANT: All LEGEND-MC commands must be upper case.
249

LEGEND-MC User’s Manual
All axes data may be specified at once using the * symbol. This sets all axes to have the same data. For
example:

PR*=1000 Sets all axes to 1000

Example XYZW Syntax for Specifying Data

Instead of data, some commands request action to occur on an axis or group of axes. For example, ST XY
stops motion on both the X and Y axes. Commas are not required in this case since the particular axis is
specified by the appropriate letter X Y Z or W. If no parameters follow the instruction, action will take
place on all axes. The letter S is used to specify a coordinated motion sequence.

Example XYZW syntax for Requesting Action

PR*=1000 Specify data on all axes as 1000

PRY=1000 Specify Y as 1000

PR 1000 Specify X only as 1000

PR ,2000 Specify Y only as 2000

PR ,,3000 Specify Z only as 3000

PR ,,,4000 Specify W only as 4000

PR 2000,4000,6000,8000 Specify X,Y,Z, and W

PR ,8000,,9000 Specify Y and W only

PR*=? Request X,Y,Z,W values

PR ,? Request Y value only

BG X Begin X only

BG Y Begin Y only

BG XYZW Begin all axes

BG YW Begin Y and W only

BG Begin all axes

BG S Begin coordinated sequence

BG SW Begin coordinated sequence and W axis

BG ABCDEFGH Begin all axes

BG D Begin D only
250

LEGEND-MC User’s Manual
Controller Response to Commands
For each valid command entered, the LEGEND-MC returns a colon (:). If the LEGEND-MC decodes a
command as invalid, it returns a question mark (?).

NOTE: The LEGEND-MC returns a : for valid commands.

NOTE: The LEGEND-MC returns a ? for invalid commands.

For example, if the command bg is sent in lower case, the LEGEND-MC will return a ?.

VERY IMPORTANT!
The command Tell Code, TC1, will return the reason for the “?” received for the last invalid command.

There are several coded reasons for receiving a ?. Example codes include unrecognized command (such
as typographical entry or lower case), a command given at improper time, or a command out of range,
such as exceeding maximum speed. A complete listing of all codes is listed in the TC command in the
Command Reference section.

For interrogation instructions such as Tell Position (TP) or Tell Status (TS), the LEGEND-MC returns
the requested data on the next line followed by a carriage return and line feed. The data returned is in
decimal format.

The format of the returned data can be set using the Position Format (PF) and Variable Format (VF)
command.

:bg <enter> Invalid command (lower case)

? LEGEND-MC returns a ?

:TC1 <enter> Tell Code command

1 Unrecognized command Returned response

Tell Position X :TP X <enter>

data returned 0000000000

Tell Position X and Y :TP XY <enter>

data returned 0000000000,0000000000

:PF 4 <enter> Position Format is 4 integers

:TP X <enter> Tell Position

0000 returned data
251

LEGEND-MC User’s Manual
Command Summary
Each LEGEND-MC command is described fully in the command reference section of this manual. A
summary of the commands follows.

The commands are grouped in this summary by the following functional categories:

• Motion

• Program Flow

• General Configuration

• Control Settings

• Status and Error/Limits

Motion commands are those to specify modes of motion such as Jog Mode or Linear Interpolation, and to
specify motion parameters such as speed, acceleration and deceleration, and distance.

Program flow commands are used in Application Programming to control the program sequencer. They
include the jump on condition command and event triggers such as after position and after elapsed time.

General configuration commands are used to set controller configurations such as setting and clearing
outputs, formatting variables, and motor/encoder type.

The control setting commands include filter settings such as KP, KD, and KI and sample time.

Error/Limit commands are used to configure software limits and position error limits.

Motion

AB Abort Motion

AC Acceleration

BG Begin Motion

CD Contour Data

CM Contour Mode

CS Clear Motion Sequence

DC Deceleration

DT Contour Time Interval

EA Select Master CAM axis

EB Enable CAM mode

EG Start CAM motion for slaves

EM Define CAM cycles for each axis

EP Define CAM table intervals & start point

EQ Stop CAM motion for slaves

ES Ellipse Scaling

ET CAM table entries for slave axes

FE Find Edge

FI Find Index
252

LEGEND-MC User’s Manual
GA Master Axis for Gearing

GR Gear Ratio

HM Home

IP Increment Position

JG Jog Mode

LE Linear Interpolation End

LI Linear Interpolation Distance

LM Linear Interpolation mode

LT Latch Target

PA Position Absolute

PR Position Relative

SP Speed

ST Stop

VA Vector acceleration

VD Vector Deceleration

VE Vector Sequence End

VM Coordinated Motion Mode

VP Vector Position

VR Vector speed ratio

VS Vector Speed
253

LEGEND-MC User’s Manual
Program Flow

AD After Distance

AI After Input

AM After Motion Complete

AP After Absolute Position

AR After Relative Distance

AS At Speed

AT After Time

AV After Vector Distance

ELSE ELSE Function for use with IF Conditional
Statement

EN End Program

ENDIF End of IF Conditional Statement

HX Halt Task

IF IF Conditional Statement

IN Input Variable

II Input Interrupt

JP Jump To Program Location

JS Jump To Subroutine

MC After motor is in position

MF After motion -- forward direction

MG Message

MR After motion -- reverse direction

NO No operation

RE Return from Error Subroutine

RI Return from Interrupt

TW Timeout for in position

WC Wait for Contour Data

WT Wait

XQ Execute Program

ZS Zero Subroutine Stack
254

LEGEND-MC User’s Manual
General Configuration

AF Analog Feedback

AL Arm Latch

BN Burn

BP Burn Program

BV Burn Variables

CB Clear Bit

CE Configure Encoder

CN Configure Switches

DA De-Allocate Arrays

DB Dynamic Brake

DE Define Dual Encoder Position

DL Download

DM Dimension Arrays

DP Define Position

EO Echo Off

HC Handle Connect

HR Handle Restore

HS Handle Switch

HW Handle Wait

LC Lock Controller

LS List

MO Motor Off

MT Motor Type

MW Modbus Wait

OB Output Bit

OP Output Port

PF Position Format

PW Password

QD Download Array

QU Upload Array

RA Record Array

RC Record

RD Record Data

RS Reset

SB Set Bit
255

LEGEND-MC User’s Manual
Control Filter Settings

Status

UL Upload

VF Variable Format

DV Damping for dual loop

FA Acceleration Feed Forward

FV Velocity Feed Forward

IL Integrator Limit

IT Smoothing Time Constant - Independent

KD Derivative Constant

KI Integrator Constant

KP Proportional Constant

NB Notch Bandwidth

NF Notch Filter

NZ Notch Zero

OF Offset

SH Servo Here

TL Torque Limit

TM Sample Time

VT Smoothing Time Constant - Vector

RP Report Command Position

RL Report Latch

SC Stop Code

TB Tell Status

TC Tell Error Code

TD Tell Dual Encoder

TE Tell Error

TI Tell Input

TP Tell Position

TA Tell Alarm

TH Tell Handle

QL Query Latch

RL Report Latch

TR Trace

TS Tell Switches
256

LEGEND-MC User’s Manual
Error And Limits

Arithmetic Functions

TT Tell Torque

TV Tell Velocity

BL Reverse Software Limit

ER Error Limit

FL Forward Software Limit

OE Off on Error

@ABS Absolute Value

@ACOS Arc Cosine

@AN Return AnalogInput

@ASIN Arc Sine

@ATAN Arc Tangent

@COM Return 2’s Complement

@COS Cosine

@FRAC Fraction Portion

@IN Return Digital Input

@INT Integer Portion

@OUT Return Output

@RND Round

@SIN Sine

@SQR Square root

@TAN Tangent

+ Add

- Subtract

* Multiply

/ Divide

& And

| Or

() Parentheses
257

LEGEND-MC User’s Manual
NOTES:
258

LEGEND-MC User’s Manual
6 Programming Motion
Overview

The LEGEND-MC provides several modes of motion, including independent positioning and jogging,
coordinated motion, electronic cam motion, and electronic gearing. Each one of these modes is discussed
in the following sections.

The LEGEND-MC is a single axis controller and uses X-axis motion only. The example applications
described below will help guide you to the appropriate mode of motion.

 Example Application Mode of Motion Commands

Absolute or relative positioning where
each axis is independent and follows
prescribed velocity profile.

Independent Axis Positioning PA,PR
SP,AC,DC

Velocity control where no final endpoint is
prescribed. Motion stops on Stop
command.

Independent Jogging JG
AC,DC
ST

Motion Path described as incremental
position points versus time.

Contour Mode CM
CD
DT
WC

1 motion where path is described by linear
segments.

Linear Interpolation LM
LI,LE
VS,VR
VA,VD

Electronic gearing where slave axis is
scaled to master axis which can move in
both directions.

Electronic Gearing GA
GR

Master/slave where slave axes must follow
a master such as conveyer speed.

Electronic Gearing GA
GR

Moving along arbitrary profiles or
mathematically prescribed profiles such as
sine or cosine trajectories.

Contour Mode CM
CD
DT
WC

Teaching or Record and Play Back Contour Mode with Automatic
Array Capture

CM
CD
DT
WC
RA
RD
RC

Backlash Correction Dual Loop DV
259

LEGEND-MC User’s Manual
Following a trajectory based on a master
encoder position

Electronic Cam EA
EM
EP
ET
EB
EG
EQ

Smooth motion while operating in
independent axis positioning

Independent Motion
Smoothing

IT

Smooth motion while operating in vector
or linear interpolation positioning

Vector Smoothing VT
260

LEGEND-MC User’s Manual
Independent Axis Positioning
In this mode, motion between the specified axes is independent, and each axis follows its own profile.
The user specifies the desired absolute position (PA) or relative position (PR), slew speed (SP),
acceleration ramp (AC), and deceleration ramp (DC), for each axis. On begin (BG), the LEGEND-MC
profiler generates the corresponding trapezoidal or triangular velocity profile and position trajectory. The
controller determines a new command position along the trajectory every sample period until the
specified profile is complete. Motion is complete when the last position command is sent by the
LEGEND-MC profiler.

NOTE: The actual motor motion may not be complete when the profile has been completed, however, the
next motion command may be specified.

The Begin (BG) command can be issued for all axes either simultaneously or independently. X or Y axis
specifiers are required to select the axes for motion. When no axes are specified, this causes motion to
begin on all axes.

The speed (SP) and the acceleration (AC) can be changed at any time during motion, however, the
deceleration (DC) and position (PR or PA) cannot be changed until motion is complete. Remember,
motion is complete (AM) when the profiler is finished, not when the actual motor is in position. The Stop
command (ST) can be issued at any time to decelerate the motor to a stop before it reaches its final
position.

An incremental position movement (IP) may be specified during motion as long as the additional move is
in the same direction. Here, the user specifies the desired position increment, n. The new target is equal to
the old target plus the increment, n. Upon receiving the IP command, a revised profile will be generated
for motion towards the new end position. The IP command does not require a begin. NOTE: If the motor
is not moving, the IP command is equivalent to the PR and BG command combination.

Command Summary - Independent Axis

The lower case specifiers (x,y) represent position values for each axis. The Legend-MC also allows use
of single axis specifiers such as PRY=2000.

 Command Description

PR x,y Specifies relative distance

PA x,y Specifies absolute position

SP x,y Specifies slew speed

AC x,y Specifies acceleration rate

DC x,y Specifies deceleration rate

BG XY Starts motion

ST XY Stops motion before end of move

IP x,y Changes position target

IT x,y Time constant for independent motion smoothing

AM XY Trippoint for profiler complete

MC XY Trippoint for "in position"
261

LEGEND-MC User’s Manual
 The following illustration - Velocity Profiles of XY shows the velocity profiles for the X and Y axis.

Velocity Profiles of XY

Notes on Velocity Profiles of XY illustration: The X axis has a ‘trapezoidal’ velocity profile, while the Y axis has a
‘triangular’ velocity profile. The X axis accelerates to the specified speed, moves at this constant speed, and then
decelerates such that the final position agrees with the commanded position, PR. The Y axis accelerates, but before the
specified speed is achieved, must begin deceleration such that the axis will stop at the commanded position.

 Instruction Interpretation

#A Begin Program

PR 2000,100 Specify relative position movement of 2000 and 100 counts for the X
and Y axes.

SP 15000,5000 Specify speed of 15000 and 5000 counts / sec

AC 500000,500000 Specify acceleration of 500000 counts / sec2 for all axes

DC 500000,500000 Specify deceleration of 500000 counts / sec2 for all axes

BG X Begin motion on the X axis

WT 40 Wait 40 msec

BG Y Begin motion on the Y axis

EN End Program

VELOCITY
(COUNTS/SEC)

20000

10000

5000

15000

20 40 60 80

TIME (ms)

100

X axis velocity profile

Y axis velocity profile

0

262

LEGEND-MC User’s Manual
Independent Jogging
The jog mode of motion is very flexible because speed, direction and acceleration can be changed during
motion. The user specifies the jog speed (JG), acceleration (AC), and the deceleration (DC) rate for each
axis. The direction of motion is specified by the sign of the JG parameters. When the begin command is
given (BG), the motor accelerates up to speed and continues to jog at that speed until a new speed or stop
(ST) command is issued. If the jog speed is changed during motion, the controller will make an
accelerated (or decelerated) change to the new speed.

An instant change to the motor position can be made with the use of the IP command. Upon receiving
this command, the controller commands the motor to a position which is equal to the specified increment
plus the current position. This command is useful when trying to synchronize the position of two motors
while they are moving.

Note that the controller operates as a closed-loop position controller while in the jog mode. The
LEGEND-MC converts the velocity profile into a position trajectory and a new position target is
generated every sample period. This method of control results in precise speed regulation with phase lock
accuracy.

Command Summary - Jogging

Parameters can be set with individual axis specifiers such as JGY=2000 (set jog speed for Y axis to 2000)
or AC 400000, 400000 (set acceleration for X and Y axes to 400000).

Command Description

AC x,y Specifies acceleration rate

BG XY Begins motion

DC x,y Specifies deceleration rate

IP x,y Increments position instantly

IT x,y Time constant for independent motion smoothing

JG +/-x,y Specifies jog speed and direction

ST XY Stops motion
263

LEGEND-MC User’s Manual
Linear Interpolation Mode
The LEGEND-MC provides a linear interpolation mode for 1 axis. In linear interpolation mode, motion is
coordinated to maintain the prescribed vector speed, acceleration, and deceleration along the specified
path. The motion path is described in terms of incremental distances. An unlimited number of incremental
segments may be given in a continuous move sequence, making the linear interpolation mode ideal for
following a piece-wise linear path. There is no limit to the total move length.

The LM command selects the Linear Interpolation mode and axes for interpolation. For example, LM X
selects the X axis for linear interpolation.

When using the linear interpolation mode, the LM command only needs to be specified once unless the
axes for linear interpolation change.

Specifying Linear Segments
The command LI x specifies the incremental move distance for each axis. This means motion is prescribed
with respect to the current axis position. Up to 511 incremental move segments may be given prior to the
Begin Sequence (BGS) command. Once motion has begun, additional LI segments may be sent to the
controller.

The clear sequence (CS) command can be used to remove LI segments stored in the buffer prior to the
start of the motion. To stop the motion, use the instructions STS or AB. The command, ST, causes a
decelerated stop. The command, AB, causes an instantaneous stop and aborts the program, and the
command AB1 aborts the motion only.

The Linear End (LE) command must be used to specify the end of a linear move sequence. This command
tells the controller to decelerate to a stop following the last LI command. If an LE command is not given,
an Abort AB1 must be used to abort the motion sequence.

It is the responsibility of the user to keep enough LI segments in the LEGEND-MC sequence buffer to
ensure continuous motion. If the controller receives no additional LI segments and no LE command, the
controller will stop motion instantly at the last vector. There will be no controlled deceleration. LM? or
_LM returns the available spaces for LI segments that can be sent to the buffer. 511 returned means the
buffer is empty and 511 LI segments can be sent. A zero means the buffer is full and no additional
segments can be sent. As long as the buffer is not full, additional LI segments can be sent.

The instruction _CS returns the number of the segment being processed. As the segments are processed,
_CS increases, starting at zero. This function allows the host computer to determine which segment is
being completed.

Additional Commands
The commands VS n, VA n, and VD n are used to specify the vector speed, acceleration, and deceleration.
The LEGEND-MC computes the vector speed based on the axes specified in the LM mode. For example,

VT is used to set the S-curve smoothing constant for coordinated moves. The command AV n is the ‘After
Vector’ trippoint, which halts program execution until the vector distance of n has been reached.
264

LEGEND-MC User’s Manual
Specifying Vector Speed for Each Segment
The instruction VS has an immediate effect and, therefore, must be given at the required time. In some
applications, such as CNC, it is necessary to attach various speeds to different motion segments. This can
be done with two functions: < n and > m

For example:LI x < n >m

The first command, < n, is equivalent to commanding VSn at the start of the given segment and will
cause an acceleration toward the new commanded speed, subject to the other constraints.

The second function, > m, requires the vector speed to reach the value m at the end of the segment. Note
that the function > m may start the deceleration within the given segment or during previous segments, as
needed to meet the final speed requirement, under the given values of VA and VD.

Note, however, that the controller works with one > m command at a time. As a consequence, one
function may be masked by another. For example, if the function >100000 is followed by >5000, and the
distance for deceleration is not sufficient, the second condition will not be met. The controller will
attempt to lower the speed to 5000.

As an example, consider the following program.

Changing Feedrate:
The command VR n allows the feedrate, VS, to be scaled between 0 and 10 with a resolution of .0001.
This command takes effect immediately and causes VS to be scaled. VR also applies when the vector
speed is specified with the ‘<’ operator. This is a useful feature for feedrate override. VR does not ratio

Instruction Interpretation

#ALT Label for alternative program

DP 0,0 Define Position of X and Y axis to be 0

LMX Define linear mode.

LI 4000 <4000 >1000 Specify first linear segment with a vector speed of 4000 and
end speed 1000

LI 1000 < 4000 >1000 Specify second linear segment with a vector speed of 4000
and end speed 1000

LI 0 < 4000 >1000 Specify third linear segment with a vector speed of 4000 and
end speed 1000

LE End linear segments

BGS Begin motion sequence

EN Program end
265

LEGEND-MC User’s Manual
the accelerations. For example, VR .5 results in the specification VS 2000 to be divided in half.

Command Summary - Linear Interpolation

To illustrate the ability to interrogate the motion status, consider the first motion segment of our example,
#LMOVE, where the X axis moves toward the point X=5000. Suppose that when X=3000, the controller
is interrogated using the command ‘MG _AV’. The returned value will be 3000. The value of _CS and
_VPX will be zero.

Command Description

LMX Specify axes for linear interpolation

LM? Returns number of available spaces for linear segments in LEGEND-MC
sequence buffer. Zero means buffer full. 511 means buffer empty.

LI x < n Specify incremental distances relative to current position, and assign vector
speed n.

VS n Specify vector speed

VA n Specify vector acceleration

VD n Specify vector deceleration

VR n Specify the vector speed ratio

BGS Begin Linear Sequence

CS Clear sequence

LE Linear End- Required at end of LI command sequence

LE? Returns the length of the vector (resets after 2147483647)

AMS Trippoint for After Sequence complete

AV n Trippoint for After Relative Vector distance, n

VT Motion smoothing constant for vector moves
266

LEGEND-MC User’s Manual
Vector Mode: Linear Interpolation Motion

Specifying Vector Segments
The motion segment is described by the command; VP for linear segments. Once a set of linear segments
have been specified, the sequence is ended with the command VE. This defines a sequence of commands
for coordinated motion. Immediately prior to the execution of the first coordinated movement, the
controller defines the current position to be zero for all movements in a sequence.

NOTE: This ‘internal’ definition of zero does not affect the absolute coordinate system or subsequent coor-
dinated motion sequences.

The command, VP x specifies the coordinates of the end points of the vector movement with respect to
the starting point.

Up to 511 VP segments may be specified in a single sequence and must be ended with the command VE.
The motion can be initiated with a Begin Sequence (BGS) command. Once motion starts, additional
segments may be added.

The Clear Sequence (CS) command can be used to remove previous VP commands which were stored in
the buffer prior to the start of the motion. To stop the motion, use the instructions STS or AB1. ST stops
motion at the specified deceleration. AB1 aborts the motion instantaneously.

The Vector End (VE) command must be used to specify the end of the coordinated motion. This
command tells the controller to decelerate to a stop following the last motion in the sequence. If a VE
command is not given, an Abort (AB1) must be used to abort the coordinated motion sequence.

The user must keep enough motion segments in the LEGEND-MC sequence buffer to ensure continuous
motion. If the controller receives no additional motion segments and no VE command, the controller will
stop motion instantly at the last vector. There will be no controlled deceleration. LM? or _LM returns the
available spaces for motion segments that can be sent to the buffer. 511 returned means the buffer is
empty and 511 segments can be sent. A zero means the buffer is full and no additional segments can be
sent. As long as the buffer is not full, additional segments can be sent at the PCI bus speed.

The operand _CS can be used to determine the value of the segment counter.

Additional Commands
The commands VS n, VA n and VD n are used for specifying the vector speed, acceleration, and
deceleration. VT is the motion smoothing constant used for coordinated motion.
267

LEGEND-MC User’s Manual
Specifying Vector Speed for Each Segment:
The vector speed may be specified by the immediate command VS. It can also be attached to a motion
segment with the instructions

VP x < n >m

The first parameter, <n, is equivalent to commanding VSn at the start of the given segment and will cause
an acceleration toward the new commanded speeds, subjects to the other constraints.

The second parameter, > m, requires the vector speed to reach the value m at the end of the segment. Note
that the function > m may start the deceleration within the given segment or during previous segments, as
needed to meet the final speed requirement, under the given values of VA and VD.

Note, however, that the controller works with one > m command at a time. As a consequence, one
function may be masked by another. For example, if the function >100000 is followed by >5000, and the
distance for deceleration is not sufficient, the second condition will not be met. The controller will attempt
to lower the speed to 5000, but will reach that at a different point.

Changing Feedrate:
The command VR n allows the feedrate, VS, to be scaled from 0 and 10 times with a resolution of .0001.
This command takes effect immediately and causes VS scaled. VR also applies when the vector speed is
specified with the ‘<’ operator. This is a useful feature for feedrate override. VR does not ratio the
accelerations. For example, VR .5 results in the specification VS 2000 act as VS 1000.

Trippoints:
The AV n command is the After Vector trippoint, which waits for the vector relative distance of n to occur
before executing the next command in a program.

Command Summary - Coordinated Motion Sequence

Command Description

VM m,n Specifies the axes for planar motion where m and n represent the planar axes
and p is the tangent axis.

VP m,n Return coordinate of last point, where m=X,Y,Z or W.

VS n Specify vector speed or feedrate of sequence.

VA n Specify vector acceleration along the sequence.

VD n Specify vector deceleration along the sequence.

VR n Specify vector speed ratio

BGS Begin motion sequence

CS Clear sequence.

AV n Trippoint for After Relative Vector distance, n.

AMS Holds execution of next command until Motion Sequence is complete.

VT S curve smoothing constant for coordinated moves

LM? Return number of available spaces for linear and circular segments in
LEGEND-MC sequence buffer. Zero means buffer is full. 512 means buffer is
empty.
268

LEGEND-MC User’s Manual
Operand Summary - Coordinated Motion Sequence

When AV is used as an operand, _AV returns the distance traveled along the sequence.

The operands _VPX and _VPY can be used to return the coordinates of the last point specified along the
path.

Operand Description

_vpm The absolute coordinate of the axes at the last intersection along the sequence.

_AV Distance traveled.

_LM Number of available spaces for linear and circular segments in the LEGEND-
MC sequence buffer. Zero means buffer is full. 512 means buffer is empty.

_CS Segment counter - Number of the segment in the sequence, starting at zero.

_VE Vector length of coordinated move sequence.
269

LEGEND-MC User’s Manual
Electronic Gearing
With the LEGEND-MC, the master is always the auxiliary encoder. The master may rotate in both
directions and the geared axis will follow at the specified gear ratio.

The GA command is unnecessary for the LEGEND-MC, as the auxiliary encoder is automatically used.
GR x,y specifies the gear ratios for the slaves where the ratio may be a number between +/-127.9999 with
a fractional resolution of .0001. GR 0,0 turns off gearing in both modes. A limit switch or ST command
disables gearing.

 GR causes the specified axes to be geared to the actual position of the master.

Electronic gearing allows the geared motor to perform a second independent or coordinated move in
addition to the gearing. For example, when a geared motor follows a master at a ratio of 1:1, it may be
advanced an additional distance with PR, JG, VP, or LI commands.

Command Summary - Electronic Gearing

Command Description

GA n Specifies master axes for gearing where n=DX for auxiliary encoder.

GR x Sets gear ratio for slave axes. 0 disables electronic gearing .

GR a Sets gear ratio for slave axes. 0 disables electronic gearing.

MR x Trippoint for reverse motion past specified value.

MF x Trippoint for forward motion past specified value.
270

LEGEND-MC User’s Manual
Electronic Cam
The electronic cam is a motion control mode which enables the periodic synchronization of the servo
motor with an external device. The LEGEND-MC uses the auxiliary encoder as the master axis.

The electronic cam is a more detailed type of electronic gearing which allows a table-based relationship
between the axes. To illustrate the procedure of setting the cam mode, consider the cam relationship for
the slave axis X. Such a graphic relationship is shown in the following illustration - Electronic Cam
Example.

Step 1. Selecting the master axis

The first step in the electronic cam mode is to select the master axis. This is done with the instruction

EAD is the auxiliary encoder for the x-axis

For the given example, since the master is x, we specify EADX

Step 2. Specify the master cycle and the change in the slave axis.

In the electronic cam mode, the position of the master is always expressed within one cycle. In this
example, the position of x is always expressed in the range between 0 and 6000. Similarly, the slave
position is also redefined such that it starts at zero and ends at 1500. At the end of a cycle when the
master is 6000 and the slave is 1500, the positions of both x and y are redefined as zero. To specify the
master cycle and the slave cycle change, we use the instruction EM and MM.

EM x; MMx

where EMx specifies the cycle of the slave over one cycle and MMx specifies the cycle of the master.

The cycle of the master is limited to 8,388,607 whereas the slave change per cycle is limited to
2,147,483,647. If the change is a negative number, the absolute value is specified. For the given example,
the cycle of the master is 6000 counts and the change in the slave is 1500. Therefore, we use the
instructions:

EM 1500; MM 6000

Step 3. Specify the master interval and starting point.

Next we need to construct the ECAM table. The table is specified at uniform intervals of master
positions. Up to 256 intervals are allowed. The size of the master interval and the starting point are
specified by the instruction:

EP m,n

where m is the interval width in counts, and n is the starting point.

For the given example, we can specify the table by specifying the position at the master points of 0, 2000,
4000 and 6000. We can specify that by

EP 2000,0

Step 4. Specify the slave positions.

Next, we specify the slave positions with the instruction

ET[n]=x

where n indicates the order of the point.
271

LEGEND-MC User’s Manual
The value, n, starts at zero and may go up to 256. The parameter x indicates the corresponding slave
position. For this example, the table may be specified by

ET[0]=0

ET[1]=3000

ET[2]=2250

ET[3]=1500

This specifies the ECAM table.

Step 5. Enable the ECAM

To enable the ECAM mode, use the command

EB n

where n=1 enables ECAM mode and n=0 disables ECAM mode.

Step 6. Engage the slave motion

To engage the slave motion, use the instruction

EG x

where x is the master positions at which the corresponding slaves must be engaged.

If the value of any parameter is outside the range of one cycle, the cam engages immediately. When the
cam is engaged, the slave position is redefined, modulo one cycle.

Step 7. Disengage the slave motion

To disengage the cam, use the command

EQ x

where x is the master positions at which the corresponding slave axes are disengaged.

 Electronic Cam Example

Master X4000

2250

2000 6000

3000

1500

0

272

LEGEND-MC User’s Manual
This disengages the slave axis at a specified master position. If the parameter is outside the master cycle,
the stopping is instantaneous.

To illustrate the complete process, consider the cam relationship described by

the equation:

Y = 0.5 ∗ X + 100 sin (0.18∗X)

where X is the master, with a cycle of 2000 counts.

The cam table can be constructed manually, point by point, or automatically by a program. The following
program includes the set-up.

The instruction EAX defines X as the master axis. The cycle of the master is

2000. Over that cycle, X varies by 1000. This leads to the instruction EM 2000,1000.

Suppose we want to define a table with 100 segments. This implies increments of 20 counts each. If the
master points are to start at zero, the required instruction is EP 20,0.

The following routine computes the table points. As the phase equals 0.18X and X varies in increments
of 20, the phase varies by increments of 3.6°. The program then computes the values of SLAVE
according to the equation and assigns the values to the table with the instruction ET[N] = SLAVE.

Now suppose that the slave axis is engaged with a start signal, input 1, but that both the engagement and
disengagement points must be done at the center of the cycle: X = 1000 and Y = 500. This implies that Y
must be driven to that point to avoid a jump.

Instruction Interpretation

#SETUP Label

EAX Select X as master

EM 1000 Specify slave cycle

EP 20,0 Master position increments

MM 1000 Specify master cycle

N = 0 Index

#LOOP Loop to construct table from equation

P = N∗3.6 Note 3.6 = 0.18∗20

S = @SIN [P]∗100 Define sine position

SLAVE = N∗10+S Define slave position

ET [N] = SLAVE Define table

N = N+1

JP #LOOP, N<=100 Repeat the process

EN
273

LEGEND-MC User’s Manual
This is done with the program:

Instruction Interpretation

#RUN Label

EB1 Enable cam

PA,500 Y starting position

SP,5000 Y speed

BGY Move Y motor

AM After Y moved

AI1 Wait for start signal

EG,1000 Engage slave

AI – 1 Wait for stop signal

EQ,1000 Disengage slave

EN End
274

LEGEND-MC User’s Manual
Contour Mode
The LEGEND-MC also provides a contouring mode. This mode allows any arbitrary position curve to be
prescribed for any motion axes. This is ideal for following computer generated paths such as parabolic,
spherical or user-defined profiles. The path is not limited to straight line and arc segments and the path
length may be infinite.

Specifying Contour Segments
The Contour Mode is specified with the command, CM, i.e.; CMX specifies contouring on the X axis.

A contour is described by position increments which are described with the command, CD x over a time
interval, DT n. The parameter, n, specifies the time interval. The time interval is defined as 2n ms, where
n is a number between 1 and 8. The controller performs linear interpolation between the specified
increments, where one point is generated for each millisecond.

Consider, for example, the illustration labelled The Required Trajectory on the following page. The position
X may be described by the points:

The same trajectory may be represented by the increments

When the controller receives the command to generate a trajectory along these points, it interpolates
linearly between the points. The resulting interpolated points include the position 12 at 1 msec, position
24 at 2 msec, etc.

The programmed commands to specify the above example are:

Point 1 X=0 at T=0ms

Point 2 X=48 at T=4ms

Point 3 X=288 at T=12ms

Point 4 X=336 at T=28ms

Increment 1 DX=48 Time Increment =4 DT=2

Increment 2 DX=240 Time Increment =8 DT=3

Increment 3 DX=48 Time Increment =16 DT=4

Instruction Description

#A Label

CMX Specifies X axis for contour mode

DT 2 Specifies first time interval, 22 ms

CD 48;WC Specifies first position increment

DT 3 Specifies second time interval, 23 ms

CD 240;WC Specifies second position increment

DT 4 Specifies the third time interval, 24 ms

CD 48;WC Specifies the third position increment

DT0;CD0 Exits contour mode

EN
275

LEGEND-MC User’s Manual
The Required Trajectory

Additional Commands
The command, WC, is used as a trippoint "When Complete" or “Wait for Contour Data”. This allows the
LEGEND-MC to use the next increment only when it is finished with the previous one. Zero parameters
for DT followed by zero parameters for CD exit the contour mode.

If no new data record is found and the controller is still in the contour mode, the controller waits for new
data. No new motion commands are generated while waiting. If bad data is received, the controller
responds with a ?.

Command Summary - Contour Mode

General Velocity Profiles
The Contour Mode is ideal for generating an arbitrary velocity profile. The velocity profile can be
specified as a mathematical function or as a collection of points.

The design includes two parts: Generating an array with data points and running the program.

Command Description

CM X Specifies the X-axis for contouring mode. In a distributed control system, any
non-contouring axes may be operated in other modes.

CD x Specifies position increment over time interval. Range is +/-32,000. Zero ends
contour mode.

DT n Specifies time interval 2n msec for position increment, where n is an integer
between 1 and 8. Zero ends contour mode. If n does not change, it does not
need to be specified with each CD.

WC Waits for previous time interval to be complete before next data record is
processed.

POSITION
(COUNTS)

240

96

48

192

TIME (ms)

0 4 8 12 16 20 24 28

288

336

SEGMENT 1 SEGMENT 2 SEGMENT 3
276

LEGEND-MC User’s Manual
Motion Smoothing
The LEGEND-MC controller allows the smoothing of the velocity profile to reduce mechanical
vibrations in the system.

Trapezoidal velocity profiles have acceleration rates which change abruptly from zero to maximum
value. The discontinuous acceleration results in jerk which causes vibration. The smoothing of the
acceleration profile leads to a continuous acceleration profile and reduces the mechanical shock and
vibration.

Using the IT and VT Commands (S curve profiling):
When operating with servo motors, motion smoothing can be accomplished with the IT and VT
commands. These commands filter the acceleration and deceleration functions to produce a smooth
velocity profile. The resulting velocity profile, known as S curve, has continuous acceleration and results
in reduced mechanical vibrations.

The smoothing function is specified by the following commands:

The command IT is used for smoothing independent moves of the type JG, PR, PA and the command VT
is used to smooth vector moves of the type VM and LM.

The smoothing parameters x,y and n are numbers between 0 and 1 and determine the degree of filtering.
The maximum value of 1 implies no filtering, resulting in trapezoidal velocity profiles. Smaller values of
the smoothing parameters imply heavier filtering and smoother moves.

Note that the smoothing process results in longer motion time.

Command Description

IT x,y Independent time constant

VT n Vector time constant
277

LEGEND-MC User’s Manual
Homing
The Find Edge (FE) and Home (HM) instructions are used to home the motor to a mechanical reference.
This reference is connected to the Home input line. The HM command initializes the motor to the encoder
index pulse in addition to the Home input. The configure command (CN) defines polarity of the home
input.

The Find Edge (FE) instruction is useful for initializing the motor to a home switch. The home switch is
connected to the Home input. When the Find Edge command and Begin are used, the motor will
accelerate up to the slew speed and slew until a transition is detected on the homing line. The motor will
then decelerate to a stop. A high deceleration value must be input before the find edge command is issued
for the motor to decelerate rapidly after sensing the home switch. The velocity profile generated is shown
in the following illustration - Motion intervals in the Home sequence.

The Home (HM) command can be used to position the motor on the index pulse after the home switch is
detected. This allows for finer positioning on initialization. The command sequence HM and BG causes
the following sequence of events to occur.

1. Upon beginning, the motor accelerates to the slew speed. The direction of its motion is deter-
mined by the homing input. A zero (GND) will cause the motor to start in the forward direction;
+24V will cause it to start in the reverse direction. The CN command defines the polarity of the
home input.

2. Upon detecting a change in state on the home input, the motor begins decelerating to a stop.

3. The motor then traverses very slowly back until the home switch toggles again.

4. The motor then traverses forward until the encoder index pulse is detected.

5. The LEGEND-MC defines the home position as the position at which the index was detected and
sets the encoder reading at this position to zero.

POSITION

POSITION

POSITION

POSITION

POSITION

HOME SWITCH

INDEX PULSES

MOTION REVERSE
TOWARD HOME
 DIRECTION

MOTION TOWARD INDEX
 DIRECTION

MOTION BEGINS
TOWARD HOME
 DIRECTION

Motion intervals in the Home sequence
278

LEGEND-MC User’s Manual
High Speed Position Capture (Latch Function)
Often it is desirable to capture the position precisely for registration applications. The LEGEND-MC
provides a position latch feature. This feature allows position of the main X axis to be captured within 25
microseconds of an external low input signal. General input 1 is the corresponding latch input for the
main encoder.

NOTE: To insure a position capture within 25 microseconds, the input signal must be a transition from
high to low.

The LEGEND-MC software commands AL and RL are used to arm the latch and report the latched
position. The steps to use the latch are as follows:

1. Give the AL X command to arm the latch for the main (LEGEND) encoder.

2. Test to see if the latch has occurred by using the _ALX command. Example, V1=_ALX returns
the state of the X latch to the variable V1. V1 is 1 if the latch has not occurred.

3. After the latch has occurred, read the captured position with the RLX command or _RLX.

NOTE: The latch must be re-armed after each latching event.

To capture the position of the auxiliary encoder, use the command ALSX. The input must be wired to
general input 2. _QL holds the captured position.
279

LEGEND-MC User’s Manual
NOTES:
280

LEGEND-MC User’s Manual
7 Application Programming
Introduction

The LEGEND-MC programming language is a powerful language that allows users to customize a
program to handle their application. Complex programs can be downloaded into the LEGEND-MC
memory for later execution. Utilizing the LEGEND-MC to execute sophisticated programs frees the host
computer for other tasks. The host computer can still send commands to the controller any time, even
while a program is being executed.

In addition to standard motion commands, the LEGEND-MC provides commands that allow the
LEGEND-MC to make its own decisions. These commands include conditional jumps, event triggers,
and subroutines. For example, the command JP#LOOP, N<10 causes a jump to the label #LOOP if the
variable N is less than 10.

For flexibility, the LEGEND-MC provides 254 user-defined variables, arrays and arithmetic functions,
i.e.; length in a cut-to-length operation can be specified as a variable in a program and assigned by an
operator.

The following sections in this chapter discuss all aspects of creating applications programs.

Program Format
A LEGEND-MC program consists of several LEGEND-MC instructions combined to solve a machine
control application. Action instructions, such as starting and stopping motion, are combined with
Program Flow instructions to form the complete program. Program Flow instructions evaluate real-time
conditions, such as elapsed time or motion complete, and alter program flow accordingly.

A delimiter must separate each LEGEND-MC instruction in a program. Valid delimiters are the
semicolon (;) or carriage return. The semicolon is used to separate multiple instructions on a single
program line. A carriage return enters the final command on a program line.

All LEGEND-MC programs must begin with a label and end with an End (EN) statement. Labels start
with the pound (#) sign followed by a maximum of seven characters. The first character must be a letter;
after that, numbers are permitted. Spaces are not permitted.

The maximum number of labels that may be defined is 126.

Valid labels

#BEGIN

#SQUARE

#X1

#BEGIN1

Invalid labels

#1Square

#123
281

LEGEND-MC User’s Manual
Special Labels
There are also some special labels, which are used to define input interrupt subroutines, limit switch
subroutines, error handling subroutines, and command error subroutines. Special labels provide the
application program a method of handling situations that would otherwise be difficult to program.

Example Program:

The above program will execute automatically at power up and move X and Y 10000 and 20000 units.
After the motion is complete, the motors rest for 2 seconds. The cycle repeats indefinitely until the stop
command is issued. Automatic execution assumes that the program has been burned in using the BP
command.

#AUTO Label for automatic program start

#CMDERR Label for incorrect command subroutine

#COMINT Label for communication interrupt

#ININT Label for Input Interrupt subroutine

#LIMSWI Label for Limit Switch subroutine

#MCTIME Label for timeout if encoder is not in-position within time
specified by TW.

#POSERR Label for excess Position Error subroutine

#TCPERR Ethernet error

#AUTO Beginning of the Program

SH Turn motors on

PR 10000,20000;BG XY Specify relative distances on X and Y axes; Begin Motion

AM Wait for motion complete

WT 2000 Wait 2 sec

JP # AUTO Jump to label AUTO

EN End of Program
282

LEGEND-MC User’s Manual
Executing Programs - Multitasking
Two programs can run independently. The programs (threads) are numbered 0 through 3. 0 is the main
thread. The main thread differs from the others in the following points:

1. Only the main thread may use the input command, IN.

2. In a case of interrupts, due to inputs, limit switches, position errors or command errors, it is thread 0
which jumps to those subroutines.

The execution of the various programs is done with the instruction:

XQ #A, n

Where n indicates the thread number. To halt the execution of any thread, use the instruction

HX n

where n is the thread number.

Note that both the XQ and HX functions can be performed by an executing program.

Multitasking is useful for executing independent operations such as PLC functions that occur
independently of motion. The example below produces a waveform on Output 1 independent of a move.

The program above is executed with the instruction XQ #TASK2,0 which designates TASK2 as the main
thread. #TASK1 is executed within TASK2.

#TASK1 Task1 label

AT0 Initialize reference time

CB1 Clear Output 1

#LOOP1 Loop1 label

AT 10 Wait 10 msec from reference time

SB1 Set Output 1

AT -40 Wait 40 msec from reference time, then
initialize reference

CB1 Clear Output 1

JP #LOOP1 Repeat Loop1

#TASK2 Task2 label

XQ #TASK1,1 Execute Task1

#LOOP2 Loop2 label

PR 1000 Define relative distance

BGX Begin motion

AMX After motion done

WT 10 Wait 10 msec

JP #LOOP2,@IN[2]=1 Repeat motion unless Input 2 is low

HX Halt all tasks
283

LEGEND-MC User’s Manual
Debugging Programs
The LEGEND-MC provides trace and error code commands which are used for debugging programs. The
trace command may be activated using the command, TR1. This command causes each line in a program
to be sent out to the communications port immediately prior to execution. The TR1 command is useful for
debugging programs. TR0 disables the trace function. The TR command may also be included as part of a
program.

If there is a program error, the LEGEND-MC will halt program execution at the line number at which an
error occurs and display the line. The user can obtain information about the type of error condition that
occurred by using the command, TC1. Check the TC (Tell Code) command reference page for a complete
listing of the codes.

Program Flow Commands
The LEGEND-MC provides instructions that control program flow.the LEGEND-MC program sequencer
executes instructions in a program sequentially. Program Flow commands, however, may be used to
redirect program flow. A summary of these commands is given below and they are detailed in the
following sections.

Program Flow Command Summary

Event Triggers & Trippoints
To function independently from the host computer, the LEGEND-MC can be programmed to make
decisions based on the occurrence of an event. Such events include waiting for motion to be complete,
waiting for a specified amount of time to elapse, or waiting for an input to change logic levels.

The LEGEND-MC provides several event triggers that cause the program sequencer to halt until the
specified event occurs. Normally, a program is automatically executed sequentially one line at a time.

AD After Distance Trigger

AI After Input Trigger

AM After Motion Complete Trigger

AP After Absolute Position Trigger

AR Relative Distance Trigger

AS After Speed Trigger

AT Wait for time with respect to reference

AV After Vector Distance Trigger

ELSE ELSE Function for use with IF Conditional Statement

ENDIF End of IF Conditional Statement

IF IF Conditional Statement

JP Conditional Jump

JS Conditional Jump to Subroutine

MC Trigger "In position" trigger (TW x,y,z,w sets timeout for in-position)

MF Trigger Forward motion

MR Trigger Reverse motion

WC Wait for Contour Data

WT Wait for time to elapse
284

LEGEND-MC User’s Manual
When an event trigger instruction is decoded, however, the actual program sequence is halted. The
program sequence does not continue until the event trigger is "tripped". For example, the motion
complete trigger can be used to separate two move sequences in a program. The commands for the
second move sequence will not be executed until the motion is complete on the first motion sequence. In
this way, the LEGEND-MC can make decisions based on its own status or external events without
intervention from a host computer.

LEGEND-MC Event Triggers

Command Function

AM X Y Z W or S
(A B C D E F G H)

Halts program execution until motion is complete on the
specified axes or motion sequence(s). AM with no
parameter tests for motion complete on all axes. This
command is for separating motion sequences in a
program.

AD X or Y or Z or W
(A or B or C or D or E or F or G or
H)

Halts program execution until position command has
reached the specified relative distance from the start of
the move. Only one axis may be specified at a time.

AR X or Y or Z or W
(A or B or C or D or E or F or G or
H)

Halts program execution until after specified distance
from the last AR or AD command has elapsed. Only one
axis may be specified at a time.

AP X or Y or Z or W
(A or B or C or D or E or F or G or
H)

Halts program execution until after absolute position
occurs. Only one axis may be specified at a time.

AI +/-n Halts program execution until after specified input is at
specified logic level. n specifies input line. Positive is
high logic level, negative is low level.

AS X Y Z W S
(A B C D E F G H)

Halts program execution until specified axis has reached
its slew speed.

AT +/-n Halts program execution until n msec from reference
time. AT 0 sets reference. AT n waits n msec from
reference. AT -n waits n msec from reference and sets
new reference after elapsed time.

AV n Halts program execution until specified distance along a
coordinated path has occurred.

MC X or Y or Z or W
(A or B or C or D or E or F or G or
H)

Halt program execution until after the motion profile has
been completed and the encoder has entered or passed
the specified position. TW x,y,z,w sets timeout to
declare an error if not in position. If timeout occurs, then
the trippoint will clear and the stop code will be set to 99.
An application program will jump to label #MCTIME.

MF X or Y or Z or W
(A or B or C or D or E or F or G or
H)

Halt program execution until after forward motion
reached absolute position. Only one axis may be
specified. If position is already past the point, then MF
will trip immediately.

MR X or Y or Z or W
(A or B or C or D or E or F or G or
H)

Halt program execution until after reverse motion
reached absolute position. Only one axis may be
specified. If position is already past the point, then MR
will trip immediately.
285

LEGEND-MC User’s Manual
Event Trigger Examples:

Event Trigger - Multiple Move Sequence
The AM trippoint is used to separate the two PR moves. If AM is not used, the controller returns a ? for
the second PR command because a new PR cannot be given until motion is complete.

In the above example, the AM trippoint is used to separate the two PR moves. If AM is not used, the
controller returns a ? for the second PR command because a new PR cannot be given until motion is
complete.

WT n Halts program execution until specified time in msec has
elapsed.

#TWOMOVE Label

PR 2000 Position Command

BGX Begin Motion

AMX Wait for Motion Complete

PR 4000 Next Position Move

BGX Begin 2nd move

EN End program
286

LEGEND-MC User’s Manual
Event Trigger - Set Output after Distance
Set output bit 1 after a distance of 1000 counts from the start of the move. The accuracy of the trippoint is
the speed multiplied by the sample period.

The above example sets output bit 1 after a distance of 1000 counts from the start of the move. The
accuracy of the trippoint is the speed multiplied by the sample period.

Event Trigger - Repetitive Position Trigger
To set the output bit every 10000 counts during a move, the AR trippoint is used shown in the next
example.

#SETBIT Label

SP 10000 Speed is 10000

PA 20000 Specify Absolute position

BGX Begin motion

AD 1000 Wait until 1000 counts

SB1 Set output bit 1

EN End program

#TRIP Label

JG 50000 Specify Jog Speed

BGX;N=0 Begin Motion

#REPEAT # Repeat Loop

AR 10000 Wait 10000 counts

TPX Tell Position

SB1 Set output 1

WT50 Wait 50 msec

CB1 Clear output 1

N=N+1 Increment counter

JP #REPEAT,N<5 Repeat 5 times

STX Stop

EN End
287

LEGEND-MC User’s Manual
Event Trigger - Start Motion on Input
This example waits for input 1 to go low and then starts motion. NOTE: The AI command actually halts
execution of the program until the input occurs. If you do not want to halt the program sequences, you can
use the Input Interrupt function (II) or use a conditional jump on an input, such as JP #GO,@IN[1] = 0.

Event Trigger - Set Output when at Speed

Event Trigger - Change Speed along Vector Path
The following program changes the feed rate or vector speed at the specified distance along the vector.
The vector distance is measured from the start of the move or from the last AV command.

#INPUT Program Label

AI-1 Wait for input 1 low

PR 10000 Position command

BGX Begin motion

EN End program

#ATSPEED Program Label

JG 50000 Specify jog speed

AC 10000 Acceleration rate

BGX Begin motion

ASX Wait for at slew speed 50000

SB1 Set output 1

EN End program

#VECTOR Label

VMXY;VS 5000 Coordinated path

VP 10000,20000 Vector position

VP 20000,30000 Vector position

VE End vector

BGS Begin sequence

AV 5000 After vector distance

VS 1000 Reduce speed

EN End
288

LEGEND-MC User’s Manual
Event Trigger - Multiple Move with Wait

Define Output Waveform Using AT
The following program causes Output 1 to be high for 10 msec and low for 40 msec. The cycle repeats
every 50 msec.

Conditional Jumps
The LEGEND-MC provides Conditional Jump (JP) and Conditional Jump to Subroutine (JS) instructions
for branching to a new program location based on a specified condition. Unlike event triggers, the
conditional jump instruction does not halt the program sequence. Instead, it tests to see if a condition is
satisfied and then branches to a new location or subroutine. (A subroutine is a group of commands

#MOVES Label

PR 12000 Distance

SP 20000 Speed

AC 100000 Acceleration

BGX Start Motion

AD 10000 Wait a distance of 10,000 counts

SP 5000 New Speed

AMX Wait until motion is completed

WT 200 Wait 200 ms

PR -10000 New Position

SP 30000 New Speed

AC 150000 New Acceleration

BGX Start Motion

EN End

#OUTPUT Program label

AT0 Initialize time reference

SB1 Set Output 1

#LOOP Loop

AT 10 After 10 msec from reference,

CB1 Clear Output 1

AT -40 Wait 40 msec from reference and reset reference

SB1 Set Output 1

JP #LOOP Loop

EN
289

LEGEND-MC User’s Manual
defined by a label and EN command. After all the commands in the subroutine are executed, a return is
made to the main program). If the condition is not satisfied, the program sequence continues to the next
program line.

The JP and JS instructions have the following format:

The destination is a program line number or label. The destination is where the program sequencer jumps
to if the specified condition is satisfied. The comma designates "IF". The logical condition tests two
operands with logical operators. The operands can be any valid LEGEND-MC numeric operand, including
variables, array elements, numeric values, functions, keywords, and arithmetic expressions.

Logical operators:

Operands:

The jump statement may also be used without a condition.

Format: Meaning
JS destination, logical condition Jump to subroutine if logical condition is satisfied

JP destination, logical condition Jump to location if logical condition is satisfied

< less than

> greater than

= equal to

<= less than or equal to

>= greater than or equal to

<> not equal

Type Examples
Number V1=6

Numeric Expression V1=V7*6

@ABS[V1]>10

Array Element V1<Count[2]

Variable V1<V2

Internal Variable _TPX=0

_TVX>500

I/O V1>@AN[2]

@IN[1]=0
290

LEGEND-MC User’s Manual
Example of conditional jump statements are given below:

Conditional jumps are useful for testing events in real-time. They allow the LEGEND-MC to make
decisions without a host computer. For example, the LEGEND-MC can decide between two motion
profiles based on the state of an input line. Or, the LEGEND-MC can keep track of how many times a
motion profile is executed.

Example:
Move the X motor to absolute position 1000 counts and back to zero ten times. Wait 100 msec between
moves.

Multiple Conditional Statements

The LEGEND-MC will accept multiple conditions in a single jump statement. The conditional
statements are combined in pairs using the operands “&” and “|”. The “&” operand between any
two conditions, requires that both statements must be true for the combined statement to be true.
The “|” operand between any two conditions, requires that only one statement be true for the
combined statement to be true.

Conditional Meaning

JP #LOOP,COUNT<10 Jump to #LOOP if the variable, COUNT, is less than 10

JS #MOVE2,@IN[1]=1 Jump to subroutine #MOVE2 if input 1 is logic level high. After
the subroutine MOVE2 is executed, the program sequencer
returns to the main program location where the subroutine was
called.

JP #BLUE,@ABS[V2]>2 Jump to #BLUE if the absolute value of variable, V2, is greater
than 2

JP #C,V1*V7<=V8*V2 Jump to #C if the value of V1 times V7 is less than or equal to
the value of V8*V2

JP#A Jump to #A

#BEGIN Begin Program

COUNT=10 Initialize loop counter

#LOOP Begin loop

PA 1000 Position absolute 1000

BGX Begin move

AMX Wait for motion complete

WT 100 Wait 100 msec

PA 0 Position absolute 0

BGX Begin move

AMX Wait for motion complete

WT 100 Wait 100 msec

COUNT=COUNT-1 Decrement loop counter

JP #LOOP,COUNT>0 Test for 10 times through loop

EN End Program
291

LEGEND-MC User’s Manual
NOTE: Each condition must be placed in parentheses for proper evaluation by the controller. In addition,
the LEGEND-MC executes operations from left to right.

Example using variables named V1, V2, V3 and V4:
JP #TEST, (V1<V2) & (V3<V4)

In this example, this statement will cause the program to jump to the label #TEST if V1 is less than V2
and V3 is less than V4. To illustrate this further, consider this same example with an additional condition:

JP #TEST, ((V1<V2) & (V3<V4)) | (V5<V6)

This statement will cause the program to jump to the label #TEST under two conditions; 1. If V1 is less
than V2 and V3 is less than V4. OR 2. If V5 is less than V6.

Examples
If the condition for the JP command is satisfied, the controller branches to the specified label or line
number and continues executing commands from this point. If the condition is not satisfied, the controller
continues to execute the next commands in sequence.

Format Meaning

JP #Loop, COUNT<10 Jump to #Loop if the variable, COUNT, is
less than 10

JS #MOVE2,@IN[1]=1

Jump to subroutine #MOVE2 if input 1 is
logic level high. After thesubroutine MOVE2
is executed, the program sequencer returns to
the main program location where the
subroutine was called.

JP #BLUE,@ABS[V2]>2 Jump to #BLUE if the absolute value of
variable, V2, is greater than 2

JP #C,V1*V7<=V8*V2

Jump to #C if
the value of V1 times V7 is less than or equal
to the
 value of V8*V2

JP#A Jump to #A
292

LEGEND-MC User’s Manual
Example:
Move the A motor to absolute position 1000 counts and back to zero ten times. Wait 100 msec between
moves.

If, Else, and Endif

The LEGEND-MC provides a structured approach to conditional statements using IF, ELSE and ENDIF
commands.

Using the IF and ENDIF Commands
An IF conditional statement is formed by the combination of an IF and ENDIF command. The IF
command has as it's arguments one or more conditional statements. If the conditional statement(s)
evaluates true, the command interpreter will continue executing commands which follow the IF
command. If the conditional statement evaluates false, the controller will ignore commands until the
associated ENDIF command is executed OR an ELSE command occurs in the program (see discussion of
ELSE command below).

NOTE: An ENDIF command must always be executed for every IF command that has been executed. It
is recommended that the user not include jump commands inside IF conditional statements since this
causes re-direction of command execution. In this case, the command interpreter may not execute an
ENDIF command.

NOTE: Do not jump (JP) out of an IF block. If this occurs, the ENDIF instruction will never be
executed.

Using the ELSE Command
The ELSE command is an optional part of an IF conditional statement and allows for the execution of

#BEGIN Begin Program

COUNT=10 Initialize loop counter

#LOOP Begin loop

PA 1000 Position absolute 1000

BGA Begin move

AMA Wait for motion complete

WT 100 Wait 100 msec

PA 0 Position absolute 0

BGA Begin move

AMA Wait for motion complete

WT 100 Wait 100 msec

COUNT=COUNT-1 Decrement loop counter

JP #LOOP,COUNT>0 Test for 10 times thru loop

EN End Program
293

LEGEND-MC User’s Manual
command only when the argument of the IF command evaluates False. The ELSE command must occur
after an IF command and has no arguments. If the argument of the IF command evaluates false, the
controller will skip commands until the ELSE command. If the argument for the IF command evaluates
true, the controller will execute the commands between the IF and ELSE command.

Nesting IF Conditional Statements
The LEGEND-MC allows IF conditional statements to be included within other IF conditional statements.
This technique is known as 'nesting' and the LEGEND-MC allows up to 255 IF conditional statements to
be nested. This is a very powerful technique allowing the user to specify a variety of different cases for
branching.

Command Format - IF, ELSE and ENDIF

Format: Meaning

IF <condition> Execute commands proceeding IF command (up to ELSE command) if con-
ditional statement(s) is true, otherwise continue executing at ENDIF com-
mand or optional ELSE command.

ELSE Optional command. Allows for commands to be executed when argument of
IF command evaluates not true. Can only be used with IF command.

ENDIF Command to end IF conditional statement. Program must have an ENDIF
command for every IF command.
294

LEGEND-MC User’s Manual
Example:

Subroutines
A subroutine is a group of instructions beginning with a label and ending with an END (EN). Subroutines
are called from the main program with the jump subroutine instruction JS, followed by a label or line
number, and conditional statement. Up to 16 subroutines can be nested. After the subroutine is executed,
the program sequencer returns to the program location where the subroutine was called unless the
subroutine stack is manipulated as described in the following section.

Example:
An example of a subroutine to draw a square 500 counts per side is given below. The square is drawn at
vector position 1000,1000.

#TEST Begin Main Program "TEST"

II,,3 Enable interrupts on input 1 and input 2

MG "WAITING FOR INPUT 1, INPUT 2" Output message

#LOOP Label to be used for endless loop

JP #LOOP Endless loop

EN End of main program

#ININT Input Interrupt Subroutine

IF (@IN[1]=0) IF conditional statement based on input 1

IF (@IN[2]=0) 2nd IF executed if 1st IF conditional true

MG "INPUT 1 AND INPUT 2 ARE
ACTIVE"

Message executed if 2nd IF is true

ELSE ELSE command for 2nd IF statement

MG "ONLY INPUT 1 IS ACTIVE Message executed if 2nd IF is false

ENDIF End of 2nd conditional statement

ELSE ELSE command for 1st IF statement

MG"ONLY INPUT 2 IS ACTIVE" Message executed if 1st IF statement

ENDIF End of 1st conditional statement

#WAIT Label to be used for a loop

JP#WAIT,(@IN[1]=0) | (@IN[2]=0) Loop until Input 1& 2 are not active

RI0 End Input Interrupt Routine without restoring
trippoints

#M Begin Main Program
295

LEGEND-MC User’s Manual
Stack Manipulation
It is possible to manipulate the subroutine stack by using the ZS command. Every time a JS instruction,
interrupt or automatic routine (such as #POSERR or #LIMSWI) is executed, the subroutine stack is
incremented by 1. Normally the stack is restored with an EN instruction. Occasionally it is desirable not to
return back to the program line where the subroutine or interrupt was called. The ZS1 command clears 1
level of the stack. This allows the program sequencer to continue to the next line. The ZS0 command
resets the stack to its initial value. For example, if a limit occurs and the #LIMSWI routine is executed, it
is often desirable to restart the program sequence instead of returning to the location where the limit
occurred. To do this, give a ZS command at the end of the #LIMSWI routine.

Auto Start Routine

If the #AUTO label is included in a Burned Program (BP command), the controller will start executing the
program starting at the location of the #AUTO label when power is applied.

Automatic Subroutines for Monitoring Conditions
Often it is desirable to monitor certain conditions continuously without tying up the host or LEGEND-MC
program sequences. The LEGEND-MC can monitor several important conditions in the background.
These conditions include checking for the occurrence of a limit switch, a defined input, position error, or a
command error. Automatic monitoring is enabled by inserting a special, predefined label in the
applications program. The pre-defined labels are:

CB1 Clear Output Bit 1 (pick up pen)

VP 1000,1000;LE;BGS;AMS Define vector position; move pen

SB1 Set Output Bit 1 (put down pen)

JS #SQUARE;CB1 Jump to square subroutine

EN End Main Program

#SQUARE Square subroutine

V1=500;JS #L Define length of side

V1=-V1;JS #L Switch direction

EN End subroutine

#L;PR V1,V1;BGX Define X,Y; Begin X

AMX;BGY;AMY After motion on X, Begin Y

EN End subroutine

#AUTO Auto start program on power-up

#CMDERR Bad command given

#COMINT Communication interrupt occurred

#ININT Input specified by II goes low

#LIMSWI Limit switch on any axis goes low
296

LEGEND-MC User’s Manual
For example, the #POSERR subroutine will automatically be executed when any axis exceeds its position
error limit. The commands in the #POSERR subroutine could decode which axis is in error and take the
appropriate action. In another example, the #ININT label could be used to designate an input interrupt
subroutine. When the specified input occurs, the program will be executed automatically.

NOTE: An application program must be running for automatic monitoring to function.

Example - Limit Switch:
This program prints a message upon the occurrence of a limit switch. Note, for the #LIMSWI routine to
function, the LEGEND-MC must be executing an applications program from memory. This can be a very
simple program that does nothing but loop on a statement, such as #LOOP;JP #LOOP;EN. Motion
commands, such as JG 5000 can still be sent from the PC even while the "dummy" applications program
is being executed.

Now, when a forward limit switch occurs on the X axis, the #LIMSWI subroutine will be executed.

NOTE: The RE command is used to return from the #LIMSWI subroutine.

NOTE: The #LIMSWI will continue to be executed until the limit switch is cleared (goes high).

Example - Position Error

#MCTIME Timeout for In-position trippoint, MC

#POSERR Position error exceeds limit specified by ER

#TCPERR Ethernet error

#LOOP Dummy Program

JP #LOOP;EN Jump to Loop

#LIMSWI Limit Switch Label

MG "LIMIT OCCURRED" Print Message

RE Return to main program

:XQ #LOOP Execute Dummy Program

:JG 5000 Jog

:BGX Begin Motion

#LOOP Dummy Program

JP #LOOP;EN Loop

#POSERR Position Error Routine

V1=_TEX Read Position Error

MG "EXCESS POSITION ERROR" Print Message

MG "ERROR=",V1= Print Error

RE Return from Error

:XQ #LOOP Execute Dummy Program

:JG 100000 Jog at High Speed
297

LEGEND-MC User’s Manual
If the position error on the X axis exceeds that specified by the ER command, the #POSERR routine will
execute.

NOTE: The RE command is used to return from the #POSERR subroutine

NOTE: The #POSERR routine will continue to be executed until the position error is cleared (is less than the
ER limit).

Input Interrupt Example:

NOTE: Use the RI command to return from #ININT subroutine.

:BGX Begin Motion

#A Label

II1 Input Interrupt on 1

JG 30000,,,60000 Jog

BGXW Begin Motion

#LOOP;JP#LOOP;EN Loop

#ININT Input Interrupt

ST;AM Stop Motion

#TEST;JP #TEST, @IN[1]=0 Test for Input 1 still low

BGXW;RI Begin motion and Return to Main Program

EN
298

LEGEND-MC User’s Manual
Bad Command Example

The above program prompts the operator to enter a jog speed. If a number is entered out of range (greater
than 12 million), the #CMDERR routine will be executed prompting the operator to enter a new number.

#BEGIN Begin main program

IN "ENTER SPEED", SPEED Prompt for speed

JG SPEED;BGX; Begin motion

JP #BEGIN Repeat

EN End main program

#CMDERR Command error utility

JP#DONE,_TC<>6 Check if out of range

MG "SPEED TOO HIGH" Send message

MG "TRY AGAIN" Send message

ZS1 Adjust stack

JP #BEGIN Return to main program

#DONE End program if other error

ZS0 Zero stack

EN End program
299

LEGEND-MC User’s Manual
Mathematical and Functional Expressions
For manipulation of data, the LEGEND-MC provides the use of the following mathematical operators:

The numeric range for addition, subtraction and multiplication operations is +/-2,147,483,647.9999. The
precision for division is 1/65,000.

Mathematical operations are executed from left to right. Parentheses can be used and nested four deep.
Calculations within a parentheses have precedence.

Examples:

Operator Function

+ Addition

- Subtraction

* Multiplication

/ Division

& Logical And (Bit-wise)

| Logical Or (On some computers, a solid vertical line appears as a broken line)

() Parenthesis

SPEED=7.5*V1/2 The variable, SPEED, is equal to 7.5 multiplied by V1 and
divided by 2

COUNT=COUNT+2 The variable, COUNT, is equal to the current value plus 2.

RESULT=_TPX-
(@COS[45]*40)

Puts the position of X - 28.28 in RESULT. 40 * cosine of
45° is 28.28

TEMP=@IN[1]&@IN[2] TEMP is equal to 1 only if Input 1 and Input 2 are high
300

LEGEND-MC User’s Manual
The LEGEND-MC also provides the following functions:

Functions may be combined with mathematical expressions. The order of execution is from left to right.
The units of the SIN and COS functions are in degrees with resolution of 1/128 degrees. The values can
be up to +/-2 billion degrees.

Example:

Function Command Meaning

@ABS[n] Absolute Value

@ACOS[n] Arc Cosine

@AN[n] Read analog input n

@ASIN[n] Arc Sine

@ATAN[n] Arc Tangent

@COM[n] 2's Complement

@COS[n] Cosine

@FRAC[n] Fraction

@IN[n] Read digital input n

@INT[n] Integer

@OUT[n] Output state

@RND[n] Rounds number .5 and up to next integer

@SIN[n] Sine

@SQR[n] Square Root Function; Accuracy is +/-.0004

@TAN[n] Tangent

V1=@ABS[V7] The variable, V1, is equal to the absolute value of variable V7.

V2=5*@SIN[POS] The variable, V2, is equal to five times the sine of the variable,
POS.

V3=@IN[1] The variable, V3, is equal to the digital value of input 1.

V4=@AN[5] The variable, V4, is equal to the digital value of analog input 5.
301

LEGEND-MC User’s Manual
Variables
Many motion applications include parameters that are variable. For example, a cut-to-length application
often requires that the cut length be variable. The motion process is the same, however the length is
changing.

To accommodate these applications, the LEGEND-MC provides for the use of both numeric and string
variables. A program can be written in which certain parameters, such as position or speed, are defined as
variables. The variables can later be assigned by the operator or determined by the program calculations.

All variables created in the SMC are 48 bit fixed decimal point data. 32 bits are integer (+/- 2147483647)
and 16 bits are fraction (1/65535)

Example:

Programmable Variables
The LEGEND-MC allows the user to create up to 254 variables. Each variable is defined by a name which
can be up to eight characters. The name must start with an alphabetic character, however, numbers are
permitted in the rest of the name. Spaces are not permitted. Examples of valid and invalid variable names
are:

Valid Variable Names

POSX

POS1

SPEEDZ

Invalid Variable Names

1POS

123

SPEED Z

It is recommended that variable names not be the same as LEGEND-MC instructions. For example, PR is
not a good choice for a variable name.

The range for numeric variable values is 4 bytes of integer followed by two bytes of fraction (+/-
2,147,483,647.9999).

String variables can contain up to six characters which must be in quotation. Example: VAR="STRING".

Numeric values can be assigned to programmable variables using the equal sign. Assigned values can be
numbers, internal variables and keywords, and functions. String values can be assigned to variables using
quotations.

Any valid LEGEND-MC function can be used to return a value such as V1=@ABS[V2] or V2=@IN[1].
Arithmetic operations are also permitted.

PR POSX Assigns variable POSX to PR command

JG RPMY*70 Assigns variable RPMY multiplied by 70 to JG command.
302

LEGEND-MC User’s Manual
Example:

Variable values may be assigned to controller parameters such as GN or PR. Here, an equal is not used.
For example:

PR V1 Assign V1 to PR command

Example - Using Variables for Joystick
The example below reads the voltage of an X-Y joystick and assigns it to variables VX and VY to drive
the motors at proportional velocities, where

10 Volts = 8191 counts --> 3000 rpm = 200000 c/sec

Speed/Analog input = 200000/8191 = 24.4

Internal Variables & Keywords
Internal variables allow motion or status parameters from LEGEND-MC commands to be incorporated
into programmable variables and expressions. Internal variables are designated by adding an underscore
(_) prior to the LEGEND-MC command. LEGEND-MC commands which can be used as internal
variables are listed in the Command Reference as "Used as an Operand".

Most LEGEND-MC commands can be used as internal variables. Status commands such as Tell Position
return actual values, whereas action commands such as GN or SP return the values in the LEGEND-MC
registers. The X,Y,Z or W or A,B,C,D,E,F,G,H for the LEGEND-MC, axis designation is required
following the command.

POSX=_TPX Assigns returned value from TPX command to variable POSX.

SPEED=5.75 Assigns value 5.75 to variable SPEED

INPUT=@IN[2] Assigns logical value of input 2 to variable INPUT

V2=V1+V3*V4 Assigns the value of V1 plus V3 times V4 to the variable V2.

VAR="CAT" Assign the string, CAT, to VAR

#JOYSTICK Label

JG 0,0 Set in Jog mode

BGXY Begin Motion

#LOOP Loop

VX=@AN[1]*24.4 Read joystick X

VY=@AN[2]*24.4 Read joystick Y

JG VX,VY Jog at variable VX,VY

JP#LOOP Repeat

EN End
303

LEGEND-MC User’s Manual
Examples:

Internal variables can be used in an expression and assigned to a programmable variable, but they cannot
be assigned a value. For example: _KDX=2 is invalid.

The LEGEND-MC also provides a few keywords which give access to internal variables that are not
accessible by standard LEGEND-MC commands.

Examples:

POSX=_TPX Assigns value from Tell Position X to the variable POSX.

JP #LOOP,_TEX>5 Jump to #LOOP if the position error of X is greater than 5

JP #ERROR,_TC=1 Jump to #ERROR if the error code equals 1.

Keyword Function
_BGX or _BGY or _BGW Motion Done if 1. Moving if 0.

_LFX or _LFY or _LFZ or_LFW Forward Limit (equals 0 or 1)

_LRX or _LRY or _LRZ or LRW Reverse Limit (equals 0 or 1)

TIME Free-Running Real Time Clock* (off by 2.4% - Reset
on power-on). NOTE: TIME does not use _.

_HMX or _HMY or _HMZ or HMW Home Switch (equals 0 or 1)

V1=_LFX Assign V1 the logical state of the Forward Limit Switch on the X-axis

V3=TIME Assign V3 the current value of the time clock

V4=_HMW Assign V4 the logical state of the Home input on the W-axis
304

LEGEND-MC User’s Manual
Example Program:

#TIMER Timer

INITIME=TIME Initialize time variable

PR50000;BGX Begin move

AMX After move

ELAPSED=TIME-INTIME Compute elapsed time

EN End program

#LIMSWI Limit Switch Routine

JP #FORWARD,_LFX=0 Jump if Forward Limit

AMX Wait for Motion Done

PR 1000;BGX;AMX Move Away from Reverse Limit

JP #END Exit

#FORWARD Forward Label

PR -1000;BGX;AMX Move Away from Forward Limit

#END Exit

RE Return to Main Program
305

LEGEND-MC User’s Manual
Arrays
For storing and collecting numerical data, the LEGEND-MC provides array space for 8000 elements in up
to 14 arrays. Arrays can be used to capture real-time data, such as position, torque and analog input values.
In the contouring mode, arrays are convenient for learning a position trajectory and later playing it back.

Defining Arrays
An array is defined by a name and number of entries using the DM command. The name can contain up to
eight characters, starting with an uppercase alphabetic character.

The number of entries in the defined array is enclosed in [].

Up to 14 different arrays may be defined. The arrays are one dimensional.

All array elements have the same structure as variables, 48 bit decimal point.

Example:

Each array element has a numeric range of 4 bytes of integer (231)followed by two bytes of fraction (+/-
2,147,483,647.9999).

Array space may be de-allocated using the DA command followed by the array name. DA*[0] de-
allocates all the arrays.

Assignment of Array Entries
Like variables, each array element can be assigned a value. Assigned values can be numbers or returned
values from instructions, functions and keywords.

Values are assigned to array entries using the equal sign. Assignments are made one element at a time by
specifying the element number with the associated array name.

NOTE: Remember to define arrays using the DM command before assigning entry values.

Example:

DM POSX[7] Defines an array named POSX with seven entries

DM SPEED[100] Defines an array named speed with 100 entries

DM POSX[0] Frees array space

DM SPEED[10] Dimension Speed Array

SPEED[1]=7650.2 Assigns the first element of the array, SPEED the value
7650.2

SPEED[1]= Returns array element value

POSX[10]=_TPX Assigns the 10th element of the array POSX the returned
value from the tell position command.

CON[2]=@COS[POS]*2 Assigns the second element of the array CON the cosine of
the variable POS multiplied by 2.

TIMER[1]=TIME Assigns the first element of the array timer the returned
value of the TIME keyword.
306

LEGEND-MC User’s Manual
An array element number can also be a variable. This allows array entries to be assigned sequentially
using a counter.

Example:

The above example records 10 position values at a rate of one value per 10 msec. The values are stored in
an array named POS. The variable, COUNT, is used to increment the array element counter. The above
example can also be executed with the automatic data capture feature described as follows.

Arrays may be uploaded and downloaded using the QU and QD commands.

QU array[],start,end,comma

QD array[],start,end

where array is an array name such as A[].

Start is the first element of array (default=0)

End is the last element of array (default=last element)

Comma -- if comma is a 1, then the array elements are separated by a comma. If not a 1, then the
elements are separated by a carriage return.

The file is terminated using <control>Z, <control>Q, <control>D or \.

Automatic Data Capture into Arrays
The LEGEND-MC provides a special feature for automatic capture of data such as position, position
error, inputs or torque. This is useful for teaching motion trajectories or observing system performance.
Up to eight types of data can be captured and stored in eight arrays. The capture rate or time interval may
be specified.

Commands used:

#A Begin Program

COUNT=0;DM POS[10] Initialize counter and define array

#LOOP Begin loop

WT 10 Wait 10 msec

POS[COUNT]=_TPX Record position into array element

POS[COUNT]= Report position

COUNT=COUNT+1 Increment counter

JP #LOOP,COUNT<10 Loop until 10 elements have been stored

EN End Program

RA n[],m[],o[],p[] Selects up to four arrays for data capture. The arrays must be
defined with the DM command.

RD_TI,_TPX,_SCZ,_TSY Selects the type of data to be recorded. See the table below for
the various types of data. The order of data type is important
and corresponds with the order of n,m,o,p arrays in the RA
command. In this example, the _TI input data is stored in the
first array selected by the RA command.
307

LEGEND-MC User’s Manual
Data Types for Recording

NOTE: X may be replaced by Y,Z or W for capturing data on other axes, or A,B,C,D,E,F,G,H for LEG-
END-MC.

Example - Recording into An Array
During a position move, store the X and Y positions and position error every 2 msec.

RC n,m The RC command begins data collection. Sets data capture
time interval where n is an integer between 1 and 8 and
designates 2n msec between data. m is optional and specifies
the number of elements to be captured. If m is not defined, the
number of elements defaults to the smallest array defined by
DM. n=0 stops recording.

RC? or V=_RC Returns a 0 or 1 where, 0 denotes not recording, 1 specifies
recording in progress

_DEX 2nd encoder position (dual encoder)

_TPX Encoder position

_TEX Position error

_RPX Commanded position

_RLX Latched position

_TI Inputs

_OP Output

_TSX Switches (only bit 0-4 valid)

_SCX Stop code

_TBX Status bits

_TTX Torque (reports digital value +/-32703)

#RECORD Begin program

DM XPOS[300],YPOS[300] Define X,Y position arrays

DM XERR[300],YERR[300] Define X,Y error arrays

RA XPOS[],XERR[],YPOS[],YERR[] Select arrays for capture

RD _TPX,_TEX,_TPY,_TEY Select data types

PR 10000,20000 Specify move distance

RC1 Start recording now, at rate of 2 msec

BG XY Begin motion

#A;JP #A,RC=1 Loop until done

MG "DONE" Print message

EN End program

#PLAY Play back
308

LEGEND-MC User’s Manual
N=0 Initial Counter

JP# DONE,N>300 Exit if done

N= Print Counter

X POS[N]= Print X position

Y POS[N]= Print Y position

XERR[N]= Print X error

YERR[N]= Print Y error

N=N+1 Increment Counter

#DONE Done
309

LEGEND-MC User’s Manual
NOTES:
310

LEGEND-MC User’s Manual
8 Input and Output of Data
Sending Messages

Messages may be sent to the bus using the message command, MG. This command sends specified text
and numerical or string data from variables or arrays to the screen.

Text strings are specified in quotes and variable or array data is designated by the name of the variable or
array. For formatting string variables, the {Sn} specifier is required where n is the number of characters,
1 through 6. Example:

MG STR {S3}

The above statement returns 3 characters of the string variable named STR.

Numeric data may be formatted using the {Fn.m} expression following the completed MG statement.
{$n.m} formats data in HEX instead of decimal. Example:

MG "The Final Value is", RESULT {F5.2}

The above statement sends the message:

The Final Value is xxxxx.xx

The actual numerical value for the variable, RESULT, is substituted with the format of 5 digits to the left
of the decimal and 2 to the right.

In addition to variables, functions and commands, responses can be used in the message command. For
example:

MG "Analog input is", @AN[1]

MG "The Position of X is", _TPX

The message command normally sends a carriage return and line feed following the statement. The
carriage return and the line feed may be suppressed by sending {N} at the end of the statement. This is
useful when a text string needs to surround a numeric value.

Example:

When #A is executed, the above example will appear on the screen as: The speed is 50000 counts/sec

The MG command can also be used to configure terminals. Here, any character can be sent by using {^n}
where n is any integer between 1 and 255.

Example:
MG {^07} {^255} sends the ASCII characters represented by 7 and 255 to the bus.

#A Label

JG 50000;BGX;ASX Jog, Begin, After Speed

MG "The Speed is", _TVX {F5.1} {N} Message

MG "counts/sec" Message

EN End Program
311

LEGEND-MC User’s Manual
Summary of Message Functions:

Variables may also be sent to the screen using the variable= format. Variable Name= returns the variable
value. For example, V1= , returns the value of the variable V1.

Example - Printing a Variable

Input of Data
The IN command is used to prompt the user to input numeric or string data. The input data is assigned to
the specified variable or array element.

A message prompt may be sent to the user by specifying the message characters in quotes.

Example:
#A

IN "Enter Length", LENX

EN

This program sends the message:

Enter Length

to the PC screen or dumb terminal and waits for the operator to enter a value. The operator enters the
numeric value which is assigned to the variable, LENX. String variables with up to six characters may
also be input using the {S} specifier. For example, IN "Enter X,Y or Z", V{S} specifies a string variable

MG Message command

" " Surrounds text string

{Fn.m} Formats numeric values in decimal n digits to the right of the
decimal point and m digits to the left

{$n.m} Formats numeric values in hexadecimal

{^n} Sends ASCII character specified by integer n

{N} Suppresses carriage return/line feed

{Sn} Sends the first n characters of a string variable, where n is 1
through 6.

#DISPLAY Label

PR 1000 Position Command

BGX Begin

AMX After Motion

V1=_TPX Assign Variable V1

V1= Print V1
312

LEGEND-MC User’s Manual
to be input.

Formatting Data
Returned numeric values may be formatted in decimal or hexadecimal* with a specified number of digits
to the right and left of the decimal point using the PF command.

The Position Format (PF) command formats motion values such as those returned by the Tell Position
(TP), Speed? (SP?) and Tell Error (TE) commands.

Position Format is specified by:

PF m.n

where m is the number of digits to the left of the decimal point (0 through 10) and n is the number of
digits to the right of the decimal point (0 through 4) A negative sign for m specifies hexadecimal format.

Hex values are returned preceded by a $ and in 2's complement. Hex values should be input as signed 2's
complement, where negative numbers have a negative sign. The default format is PF 10.0.

Examples:

:DP21 Define position

:TPX Tell position

0000000021 Default format

:PF4 Change format to 4 places

:TPX Tell position

0021 New format

:PF-4 Change to hexadecimal format

:TPX Tell Position

$0015 Hexadecimal value
313

LEGEND-MC User’s Manual
The following interrogation commands are affected by the PF command:

If the number of decimal places specified by PF is less than the actual value, a nine appears in all the
decimal places.

Example:

The Variable Format (VF) command is used to format variables and array elements. The VF command is
specified by:

VF m.n

where m is the number of digits to the left of the decimal point (0 through 10) and n is the number of digits
to the right of the decimal point (0 through 4).

A negative sign for m specifies hexadecimal format. The default format for VF is VF 10.4

Hex values are returned preceded by a $ and in 2's complement.

The variable format also affects returned values from internal variables such as _GNX.

DP

ER

PA

PR

TE

TP

:PF2 Format 2 places

:TPX Tell position

99 Returns 99 if actual position is more than allowed format

:V1=10 Assign V1

:V1= Return V1

0000000010.0000 Default format

:VF2.2 Change format

:V1= Return V1

10.00 New format

:VF-2.2 Specify hex format

:V1= Return V1

$0A.00 Hex value

:VF1 Change format

:V1= Return V1

9 Overflow
314

LEGEND-MC User’s Manual
PF and VF commands are global format commands. Parameters may also be formatted locally by using
the {Fn.m} or {$n.m} specification following the variable = . For example:

F specifies decimal and $ specifies hexadecimal. n is the number of digits to the left of the decimal, and
m is the number of digits to the right of the decimal. The local format is used with the MG* command.

Examples:

User Units
Variables and arithmetic operations make it easy to input data in desired user units i.e.; inches or RPM.

For example, an operator can be prompted to input a number in revolutions. The input number is
converted into counts by multiplying it by the number of counts/revolution.

The LEGEND-MC position parameters such as PR, PA and VP have units of quadrature counts. Speed
parameters such as SP, JG and VS have units of counts/sec. Acceleration parameters such as AC, DC,
VA and VD have units of counts/sec2. All input parameters must be converted into these units.

Example:

V1={F4.2} Specifies the variable V1 to be returned in a format of 4 digits to left of
decimal and 2 to the right.

:V1=10 Assign V1

:V1= Return V1

0000000010.0000 Default Format

:V1={F4.2} Specify local format

0010.00 New format

:V1={$4.2} Specify hex format

$000A.00 Hex value

:V1="ALPHA" Assign string "ALPHA" to V1

:V1={S4} Specify string format first 4 characters

ALPH

#RUN Label

IN "ENTER # OF REVOLUTIONS",N1 Prompt for revs

PR N1*2000 Convert to counts

IN "ENTER SPEED IN RPM",S1 Prompt for RPMs

SP S1*2000/60 Convert to counts/sec

IN "ENTER ACCEL IN RAD/SEC2",A1 Prompt for ACCEL

AC A1*2000/(2*3.14) Convert to counts/sec2

BG Begin motion

EN End program
315

LEGEND-MC User’s Manual
NOTES:
316

LEGEND-MC User’s Manual
9 Programmable I/O
Digital Outputs

Each bit on the output port may be set and cleared with the software instructions SB (Set Bit) and
CB(Clear Bit), or OB (define output bit).

Example:

The Output Bit (OB) instruction is useful for setting or clearing outputs depending on the value of a
variable, array, input or expression. Any non-zero value results in a set bit.

The output port may also be written to as an 8-bit word using the instruction

OP (Output Port). This instruction allows a single command to define the state of the entire 8-bit output
port, where 20 is output 1, 21 is output 2 and so on. A 1 designates that output is on.

Example:

The output port is useful for firing relays or controlling external switches and events during a motion
sequence.

Instruction Function
SB3 Sets bit 3 of output port

CB4 Clears bit 4 of output port

Instruction Function
OB1, POS Set Output 1 if the variable POS is non-zero. Clear Output 1 if

POS equals 0.

OB 2, @IN [1] Set Output 2 if Input 1 is high. If Input 1 is low, clear Output 2.

OB 3, @IN [1]&@IN [2] Set Output 3 only if Input 1 and Input 2 are high.

OB 4, COUNT [1] Set Output 4 if element 1 in the array COUNT is non-zero.

Instruction Function

OP6 Sets outputs 2 and 3 of output port to high. All other bits are 0.
(21 + 22 = 6) (1100 binary)

OP0 Clears all bits of output port to zero

OP 15 Sets all bits of output port to one.

(20 + 21 + 22 + 23) (1111 binary)
317

LEGEND-MC User’s Manual
Example - Turn ON Output After Move

Digital Inputs
The LEGEND-MC has eight digital inputs for controlling motion by local switches. The @IN[n] function
returns the logic level of the specified input 1 through 8. For example, a Jump on Condition instruction
can be used to execute a sequence if a high condition is noted on an input 3. To halt program execution,
the After Input (AI) instruction waits until the specified input has occurred.

Example:

#OUTPUT Label

PR 2000 Position Command

BG Begin

AM After move

SB1 Set Output 1

WT 1000 Wait 1000 msec

CB1 Clear Output 1

EN End

JP #A,@IN[1]=0 Jump to A if input 1 is low

JP #B,@IN[2]=1 Jump to B if input 2 is high

AI 7 Wait until input 7 is high

AI -6 Wait until input 6 is low
318

LEGEND-MC User’s Manual
10 Example Applications
Instruction Set Examples

Below are some examples of simple instructions. It is assumed your system is hooked-up and the motors
are under stable servo control.

DP*=0 <enter> Define all axis positions as 0

PF 6,6,6,6 <enter> Define position format as 6 digits

PR 100,200,300,400 <enter> Specify X,Y,Z,W position command

BG <enter> Begin Motion

TP <enter> Tell Position

00100,00200,00300,00400 Returned Position data

PR?,?,?,? <enter> Request Position Command

00100,00200,00300,00400 Returned data

BGX <enter> Begin X axis only

TPX <enter> Tell X position only

00200 Returned position data

tpx <enter> Enter invalid command

? TC1 <enter> Controller response - Request error code

1 Unrecognized command Controller response

VM XY <enter> Specify Vector Mode for XY

VS 10000 <enter> Specify Vector Speed

VP 2000,3000 <enter> Specify Vector Segment

VP 4000,5000 <enter> Specify Vector

LE <enter> Segment End Vector

BGS <enter> Begin Coordinated Sequence

TPXY <enter> Tell X and Y position

004200,005200 Returned data
319

LEGEND-MC User’s Manual
Example - Jog in X only
Jog X motor at 50000 count/s. After X motor is at its jog speed, begin jogging Z in reverse direction at
25000 count/s.

Homing Example (HM method):

Instruction Interpretation

#A Label

AC 20000,20000 Specify X,Y acceleration of 20000 cts / sec

DC 20000,20000 Specify X,Y deceleration of 20000 cts / sec

JG 50000,-25000 Specify jog speed and direction for X and Y axis

BG X Begin X motion

AS X Wait until X is at speed

BG Z Begin Z motion

EN

Instruction Interpretation

#HOME Label

AC 1000000 Acceleration Rate

DC 1000000 Deceleration Rate

SP 5000 Speed for Home Search

HM X Home X

BG X Begin Motion

AM X After Complete

MG "AT HOME" Send Message

EN End

#EDGE Label

AC 2000000 Acceleration rate

DC 2000000 Deceleration rate

SP 8000 Speed

FE Y Find edge command

BG Y Begin motion

AM Y After complete

MG "FOUND HOME" Send message

DP,0 Define position as 0

EN End
320

LEGEND-MC User’s Manual
Motion intervals in the Home sequence

POSITION

POSITION

POSITION

POSITION

POSITION

HOME SWITCH

INDEX PULSES

MOTION REVERSE
TOWARD HOME
 DIRECTION

MOTION TOWARD INDEX
 DIRECTION

MOTION BEGINS
TOWARD HOME
 DIRECTION
321

LEGEND-MC User’s Manual
Homing Example (FE and FI method)
This example demonstrates how to home servos with a home sensor in the middle of a slide where it is
possible for the servo to be on either side of the home sensor at power-up. If the servo is already past the
sensor, it will hit a limit switch first, and the #LIMSWI special label subroutine will reverse the CN
command and turn the servo around. The #BACKUP subroutine is used to make the servo come back to
the home input and go a small distance past it, so the #HOMING routine can always hit the same side of
the home sensor.

Ideally, the home sensor is a photo device. If there is a white and black strip along the slide, the photo eye
will see either light or dark, and the value of _HMX will be “1” or “0”. Under this design, the FEX
command can automatically determine the direction to find the transition point of the black and white
strip. You need not account for the limit switch or the #BACKUP routine in that case

Instruction Interpretation

#TEST

SPX=10000

ACX=1000000

DCX=1000000

CN,1

TRUE=1

FALSE=0

HOMING=FALSE

SHX; WT 2000

#HOMING

MG “Attempting to find
home” {N}

MG “(normal direction)”

FLX

BLX

HOMING=TRUE

JGX=8192;
FEX;BGX;AMX

HOMING=FALSE

JG*=500; FIX; BGX;
MCX

(MCX because the controller will automatically define the position
as zero when the index is found)

MG “Homed O.K!” EN

#BACKUP

MG “Going back to the
{N}

MG “home input..”

CN,-1
322

LEGEND-MC User’s Manual
FEX; BGX; AMX

IPX=-20000; AMX (Need to adjust number based on distance)

CN,1

JP #HOMING

EN

#LIMSWI; AB1 (AB1 optional, to instantly stop all servos)

JP#REALPRB,HOMING
=FALSE

(Do next part if limit during homing)

zs;WT 1000; JP
#BACKUP

(Next part handles a real limit event)

#REALPRB

MG “Limit Hit”

RE1

#CMDERR (Command error handler special label)

AB1; ZS

JP#LIMSWI,_TC=22 (Refer to #LIMSWI handler if try to begin or motor OFF)

MG “Error”{N};TCI{N}

MG”on line”,_ED{F3.0}

MG”Program halted!”

AB

EN
323

LEGEND-MC User’s Manual
Example - Input Interrupt

Instruction Interpretation

#A Label #A

II 1 Enable input 1 for interrupt function

JG 30000,-20000 Set speeds on A and B axes

BG AB Begin motion on A and B axes

#B Label #B

TP AB Report A and B axes positions

WI 1000 Wait 1000 milliseconds

JP #B Jump to #B

EN End of program

#INNT Interrupt subroutine

MG “Interrupt has occured” Displays the message

ST AB Stops motion on A and B axes

#LOOP;JP#LOOP,@IN[1]=0 Loop until Interrupt cleared

JG 15000,10000 Specify new speeds

WT300 Wait 300 milliseconds

BG AB Begin motion on A and B axes

RI Return from Interrupt subroutine
324

LEGEND-MC User’s Manual
Example - Position Follower (Point-to-Point)
Objective - The motor must follow an analog signal. When the analog signal varies by 10V, motor must
move 10000 counts.

Method: Read the analog input and command X to move to that point.

Example - Position Follower (Continuous Move)
Method: Read the analog input, compute the commanded position and the position error. Command the
motor to run at a speed in proportions to the position error.

Instruction Interpretation

#POINTS Label

SP 7000 Speed

AC 80000;DC 80000 Acceleration

#LOOP Label

COMPP=@AN[1]*1000 Read analog input, and compute position

PA COMPP Command position

BGX Start motion

AMX After completion

JP #LOOP Repeat

EN End

Instruction Interpretation
#CONT Label

AC 80000;DC 80000 Acceleration rate

JG 0 Start job mode

BGX Start motion

#LOOP

COMPP=@AN[1]*1000 Compute desired position

VE=COMPP-_TPX Find position error

PVEL=VE*20 Compute velocity

JG PVEL Change velocity

JP #LOOP Repeat

EN End
325

LEGEND-MC User’s Manual
Example - Absolute Position Movement

Example - Motion Smoothing

Trapezoidal velocity and smooth velocity profiles

PA 10000,20000 Specify absolute X,Y position

AC 1000000,1000000 Acceleration for X,Y

DC 1000000,1000000 Deceleration for X,Y

SP 50000,30000 Speeds for X,Y

BG XY Begin motion

Instruction Interpretation

PR 20000 Position

AC 100000 Acceleration

DC 100000 Deceleration

SP 5000 Speed

IT .5 Filter for S-curve

BG X Begin

ACCELERATION

VELOCITY

VELOCITY

VELOCITY

ACCELERATION
326

LEGEND-MC User’s Manual
Cut-to-Length Example
In this example, a length of material is to be advanced a specified distance. When the motion is complete,
a cutting head is activated to cut the material. The length is variable, and the operator is prompted to input
it in inches. Motion starts with a start button which is connected to input 1.

The load is coupled with a 2 pitch lead screw. A 2000 count/rev encoder is on the motor, resulting in a
resolution of 4000 counts/inch. The program below uses the variable LEN, to length. The IN command is
used to prompt the operator to enter the length, and the entered value is assigned to the variable LEN.

Latch Capture Example:

#BEGIN Label

AC 800000 Acceleration

DC 800000 Deceleration

SP 5000 Speed

LEN=3.4 Initial length in inches

#CUT Cut routine

AI1 Wait for start signal

IN "enter Length(IN)", LEN Prompt operator for length in inches

PR LEN *4000 Specify position in counts

BGX Begin motion to move material

AMX Wait for motion done

SB1 Set output to cut

WT100;CB1 Wait 100 msec, then turn off cutter

JP #CUT Repeat process

EN End program

Instruction Interpretation

#Latch Latch program

JG5000 Jog X

BG X Begin motion on X axis

AL X Arm Latch for X axis

#Wait #Wait label for loop

JP #Wait,_ALX=1 Jump to #Wait label if latch has not occurred

Result=_RLX Set value of variable ‘Result’ equal to the report position of X axis

Result= Print result

EN End
327

LEGEND-MC User’s Manual
Example - Electronic Gearing LEGEND-MC
Objective: Run a geared motor at a speed of 1.132 times the speed of an external master. The master is
driven at speeds between 0 and 1800 RPM (2000 counts/rev encoder), and is connected through the
auxiliary encoder inputs.

Solution: Use a LEGEND-MC controller, where the X-axis auxiliary is master and X-axis main is geared
axis.

Now suppose the gear ratio of the X-axis is to change on-the-fly to 2. This can be achieved by
commanding:

Contour Mode Example
A complete program to generate the contour movement in this example is given below. To generate an
array, compute the position value at intervals of 8 ms. This is stored at the array POS. Then, the difference
between the positions is computed and is stored in the array DIF. Finally the motors are run in the contour
mode.

GR 1.132 Specify gear ratio

GR 2 Specify gear ratio for X axis to be 2

Instruction Interpretation

#POINTS Program defines X points

DM POS[16] Allocate memory

DM DIF[15]

C=0 Set initial conditions, C is index

T=0 T is time in ms

#A

V1=50*T

V2=3*T Argument in degrees

V3=-
955*@SIN[V2]+V1

Compute position

V4=@INT[V3] Integer value of V3

POS[C]=V4 Store in array POS

T=T+8

C=C+1

JP #A,C<16

#B Program to find position differences

C=0
328

LEGEND-MC User’s Manual
#C

D=C+1

DIF[C]=POS[D]-
POS[C]

Compute the difference and store

C=C+1

JP #C,C<15

EN End first program

#RUN Program to run motor

CMX Contour Mode

DT3 4 millisecond intervals

C=0

#E

CD DIF[C] Contour Distance is in DIF

WC Wait for completion

C=C+1

JP #E, C<15

DT0

CD0 Stop Contour

EN End the program
329

LEGEND-MC User’s Manual
Example of Linear Interpolation Motion:

Generating an Array

Consider the velocity and position profiles shown in the following illustration - Velocity Profile with
Sinusoidal Acceleration. The objective is to rotate a motor a distance of 6000 counts in 120 ms. The velocity
profile is sinusoidal to reduce the jerk and the system vibration. If we describe the position displacement
in terms of A counts in B milliseconds, we can describe the motion in the following manner:

ω = (A/B) [1 - cos (2πΤ/B)]

X = (AT/B) - (A/2π)sin (2πΤ/B)

NOTE: ω is the angular velocity; X is the position; and T is the variable, time, in milliseconds.

In the given example, A=6000 and B=120, the position and velocity profiles are:

X = 50T - (6000/2π) sin (2π T/120)

Note that the velocity, ω, in count/ms, is

ω = 50 [1 - cos 2π T/120]

Instruction Interpretation

#LMOVE Label

DP 0,0 Define position of X and Y axes to be 0

LMX Define linear mode between X and Y axes.

LI 5000 Specify first linear segment

LI 0 Specify second linear segment

LE End linear segments

VS 4000 Specify vector speed

BGS Begin motion sequence

AV 4000 Set trippoint to wait until vector distance of 4000 is reached

VS 1000 Change vector speed

AV 5000 Set trippoint to wait until vector distance of 5000 is reached

VS 4000 Change vector speed

EN Program end
330

LEGEND-MC User’s Manual
Velocity Profile with Sinusoidal Acceleration

The 300 can compute trigonometric functions. However, the argument must be expressed in degrees.
Using our example, the equation for X is written as:

X = 50T - 955 sin 3T
331

LEGEND-MC User’s Manual
Teach (Record and Play-Back)
Several applications require a machine motion trajectory. Use LEGEND-MC automatic array to capture
position data. Captured data may be played back in contour mode. Use the following array commands:

Record and Playback Example:

DM C[n] Dimension array

RA C[] Specify array for automatic record (up to 4 for LEGEND-MC)

RD _TPX Specify data for capturing (such as _TPX or _TPZ)

RC n,m Specify capture time interval where n is 2n msec, m is number of records to be
captured

RC? or _RC Returns a 1 if recording

Instruction Interpretation

#RECORD Begin Program

DM XPOS[501] Dimension array with 501 elements

RA XPOS[] Specify automatic record

RD _TPX Specify X position to be captured

MOX Turn X motor off

RC2 Begin recording; 4 msec interval

#A;JP#A,_RC=1 Continue until done recording

#COMPUTE Compute DX

DM DX[500] Dimension Array for DX

C=0 Initialize counter

#L Label

D=C+1

DELTA=XPOS[D]-
XPOS[C]

Compute the difference

DX[C]=DELTA Store difference in array

C=C+1 Increment index

JP #L,C<500 Repeat until done

#PLAYBCK Begin Playback

CMX Specify contour mode

DT2 Specify time increment

I=0 Initialize array counter

#B Loop counter

CD XPOS[I];WC Specify contour data I=I+1 Increment array counter JP #B,I<500 Loop until
done

DT 0;CD0 End contour mode

EN End program
332

LEGEND-MC User’s Manual
Example - Multiple Move Sequence
Required Motion Profiles:

This specifies relative position movement on the X axis. The movement is separated by 40 msec.

The following illustration - Velocity Profiles of XY shows the velocity profiles for the X and Y axis.

Velocity Profiles of XY

Notes on Velocity Profiles of XY illustration: The X axis has a ‘trapezoidal’ velocity profile, while the Y axis has a
‘triangular’ velocity profile. The X axis accelerates to the specified speed, moves at this constant speed, and then
decelerates such that the final position agrees with the commanded position, PR. The Y axis accelerates, but before
the specified speed is achieved, must begin deceleration such that the axis will stop at the commanded position.

X-Axis 2000 counts Position Y-Axis 100 counts Position

15000 count/sec Speed 5000 count/sec Speed

500000 counts/sec2 Acceleration 500000 counts/sec2 Acceleration

 Instruction Interpretation

#A Begin Program

PR 2000,100 Specify relative position movement of 2000 and 100 counts for the X
and Y axes.

SP 15000,5000 Specify speed of 15000 and 5000 counts / sec

AC 500000,500000 Specify acceleration of 500000 counts / sec2 for all axes

DC 500000,500000 Specify deceleration of 500000 counts / sec2 for all axes

BG X Begin motion on the X axis

WT 40 Wait 40 msec

BG Y Begin motion on the Y axis

EN End Program

VELOCITY
(COUNTS/SEC)

20000

10000

5000

15000

20 40 60 80

TIME (ms)

100

X axis velocity profile

Y axis velocity profile

0

333

LEGEND-MC User’s Manual
Example - Start Motion on Switch
Motor X must turn at 4000 counts/sec when the user flips a panel switch to on. When panel switch is
turned to off position, motor X must stop turning.

Solution: Connect panel switch to input 1 of LEGEND-MC. High on input 1 means switch is ON.

Examples - Input Interrupt

Special Labels
This program demonstrates five of the SPECIAL LABELS as part of a LEGEND-MC application
program. #AUTO is usually the first line of a program. When this program is burned into the LEGEND-
MC using the BP command, the program will begin executing when the power is turned ON or after the

Instruction Interpretation

#S;JG 4000 Set speed

AI 1;BGX Begin after input 1 goes high

AI -1;STX Stop after input 1 goes low

AMX;JP #S After motion, repeat

EN;

#A Label #A

II 1 Enable input 1 for interrupt function

JG 30000,-20000 Set speeds on X and Y axes

BG XY Begin motion on X and Y axes

#B Label #B

TP XY Report X and Y axes positions

WT 1000 Wait 1000 milliseconds

JP #B Jump to #B

EN End of program

#ININT Interrupt subroutine

MG "Interrupt has occurred" Displays the message

ST XY Stops motion on X and Y axes

#LOOP;JP #LOOP,@IN[1]=0 Loop until Interrupt cleared

JG 15000,10000 Specify new speeds

WT 300 Wait 300 milliseconds

BG XY Begin motion on X and Y axes

RI Return from Interrupt subroutine
334

LEGEND-MC User’s Manual
RS command is given, or the RESET button on the front is pressed.

#POSERR-- This special label is used to handle a situation in which a servo is not able to remain in
position. The special label works with the ER command. When the value of the ER command is
exceeded, thread zero automatically jumps to the #POSERR label. In this program example, ERX=150
counts. If there are low gains or if using a small motor, it is possible to cause more than 150 counts of
error by hand, causing the #POSERR label to execute. In the following example, the program displays a
message and waits for input #1 to go low (falling edge). The servo is then re-energized.

There are three ways to return from a special label like this. The example below uses RE1; i.e., to return
from the error routine to the line in thread zero that was being executed when the #POSERR occurred.
The “1” means to restore a trip point if one was in progress, such as WT, AI, AM, AT, etc.

The second method is to do an RE, meaning that any trip points that were in progress are cleared. If
thread zero was waiting for an AM command, it would continue as if the profiler had completed the path.

The third method is to use the ZS command, which clears the subroutine stack, and the LEGEND forgets
it is in the middle of an error routine. After the ZS is given, it is possible to do a JP anywhere in the
program. Typically, there would be a jump back to a main loop where manual jogging can take place.

Instruction

#AUTO

ERX=150; OEX=1, II3

SHX WT 500

#BUSY

JGX=@AN[1]*10000

BGX

MG “BUSY...”

WT500

JP#BUSY

EN

Instruction

#POSERR

SB1

MG “FOLLOWING ERROR IS HIGH!”

MG “TOGGLE INPUT #1 TO CONTINUE”

AI1; AI-1

CB1; SHX; WT 500

RE1
335

LEGEND-MC User’s Manual
The following is the special label that is automatically executed when there is a programming error, a
command given where it cannot be used, or a number out of range for a command. The example below
includes a jump to the #LIMSWI label if the _TC code is 22, which is “Begin not valid due to limit
switch.” This is considered a command error, but is easier to treat as a limit switch error. Similar
conditions could be handled by checking other _TC codes and reacting accordingly. If the error is
anything other than 22, motion is aborted without aborting the program (AB1), then a message is
prompted indicating the type of error and the line number on which it occurred. _ED reports the last line
that had an error. The #CMDERR routine can be finished just like the #POSERR special label, but it is not
recommended because usually there is very little reason to continue execution of the program if there are
serious errors in it. This routine is very useful in two ways:

First, during program design when there will be many programming mistakes, it is convenient to have the
program display the error and line number automatically.

Second, it is safer to abort motion if there is a program fault. Without the AB1command, the motors will
continue doing whatever they were doing before the fault. For example, if they were jogging, they will
continue jogging.

Instruction

#CMDERR

JP#LIMSWI,_TC=22

AB1

MG “Error”{N};TCI{N}

MG “on line”,_ED{F3.0}

MG “Program halted!”

AB

EN
336

LEGEND-MC User’s Manual
The following is the #LIMSWI special label for handling situations where limit switches ar hit during
motion. This label automatically executes if an axis is in motion and a limit switch in the direction of
motion is hit, or a software limit is exceeded. Without this special label, if a limit switch is hit during
motion, such as a position absolute move, the motor will decelerate to a stop with NO ERROR. if an AM
command is used, it will be cleared. The example as shown does not recover from the limit switch error,
but a recovery method that woks well is the use of a status flag variable. For example if the machine was
in a manual jog operation, a variable could be used to indicate that it was in jog mode (JOGMODE=1).
The first line in the #LIMSWI could jump to #PROBLEM if JOGMODE <>1, otherwise return from the
error. The two commented lines below demonstrate this. (The JOGMODE variable can be set to “1” in
the jog routine and set back to “0” at the end of the jog routine.)

Instruction

Limit= “+”

Axis=”X”; JS #HARD,_LFX=0; JS#SOFT,_FLX<_TPX

Axis=”Y”; JS #HARD,_LFY=0; JS#SOFT,_FLY<_TPY

Limit=“-”

Axis=“X”; JS#HARD,_LRX=0; JS#SOFT, _BLX>_TPX

Axis=“Y”; JS#HARD,_LRY=0; JS#SOFT, _BLY>_TPY
(JP#PROBLEM,JOGMODE=0;REI)
(#PROBLEM)

AB1; HX1; HX2; HX3

ZS

MG “PROGRAM HALTED! (LIMSWI)”

EN

#HARD;MG Limit {S}, “,Axis,“HARDWARE LIMIT HIT!”;EN

#SOFT;MG Limit {S}, “,Axis,“SOFTWARE LIMIT HIT!”;EN
337

LEGEND-MC User’s Manual
The following is the special label to handle input interrupts. Inputs 1 - 8 can be used as interrupts. this
example uses the input to tell the LEGEND that the system is under an E-STOP condition. This input may
come from a contact that also removes power from the amplifiers. Notice that the interrupt command II is
used at the beginning of the program to designate input #3 as an interrupt. When this input goes low,
thread zero automatically jumps to #ININT if it is included in the program. Notice that if the example
assumes that if an E-STOP occurs, the current operation has been scrapped. The ZS (Zero Subroutine
Stack) command is used which allows the program to jump anywhere. Usually it is easiest to jump back to
a main loop which handles the different modes of operation of the machine. Also note that if ZS is used,
the interrupt must be enabled for next time.

Wire Cutter
Activate the start switch. The motor will advance the wire a distance of 10". When motion stops, the
controller generates an output signal activating the cutter. Allow 100 ms for cutting to complete the cycle.

Suppose the motor drives the wire by a roller with a 2" diameter and the encoder resolution is 1000 lines
per revolution. Since the circumference of the roller equals 2π inches, and it corresponds to 4000
quadrature, one inch of travel equals: 4000/2π = 637 count/inch

A distance of 10 inches equals 6370 counts, and a slew speed of 5 inches / second equals 3185 count/sec.

The input signal may be applied to I1, and the output signal as output 1. Motor velocity profile and related
input and output signals are in the following illustration - Motor Velocity and Associated Input/Output signals.

The program starts at a state that we define as #A. Here the controller waits for the input pulse on I1. As
soon as the pulse is given, the controller starts the forward motion.

Upon completion of the forward move, the controller outputs a pulse for 20 ms and then waits an
additional 80 ms before returning to #A for a new cycle.

Instruction Interpretation

#ININT

AB1; HX1; HX2; HX3

SB3

MG “ESTOPPED”

AI-3; AI3 (Wait for e-stop input to go high
(re-enabled))

CB3

MG “RE-ENABLED..”

SHX

WT2000

ZS

II3 (Re-enable input interrupt for next
time)

JP #BUSY

EN
338

LEGEND-MC User’s Manual
Speed Control by Joystick
The speed of a motor is controlled by a joystick. The joystick produces a signal in the range between -
10V and +10V. The objective is to drive the motor at a speed proportional to the input voltage.

Assume that a full voltage of 10 Volts must produce a motor speed of 3000 rpm with an encoder
resolution of 1000 lines or 4000 count/rev. This speed equals:

3000 rpm = 50 rev/sec = 200000 count/sec

The program reads the input voltage periodically and assigns its value to the variable VIN. To get a speed
of 200,000 ct/sec for 10 volts, we select the speed as

Speed = 20000 x VIN

The corresponding velocity for the motor is assigned to the VEL variable.

Instruction Function
#A Label

AI1 Wait for input 1

PR 6370 Distance

SP 3185 Speed

BGX Start Motion

AMX After motion is complete

SB1 Set output bit 1

WT 20 Wait 20 ms

CB1 Clear output bit 1

WT 80 Wait 80 ms

JP #A Repeat the process

START PULSE I1

MOTOR VELOCITY

OUTPUT PULSE

TIME INTERVALS
move

output

wait ready move

Motor Velocity and the Associated Input/Output signals
339

LEGEND-MC User’s Manual
Position Control by Joystick
This system requires the position of the motor to be proportional to the joystick angle. Furthermore, the
ratio between the two positions must be programmable. For example, if the control ratio is 5:1, it implies
that when the joystick voltage is 5 Volts, corresponding to 4095 counts, the required motor position must
be 20475 counts. The variable V3 changes the position ratio.

Instruction Function

#A Label

JG0 Set motor in jog mode speed zero

BGX Start motion

#B Label

VIN=@AN[1] Read analog input

VEL=VIN*20000 Compute the desired velocity

JG VEL Change the jog speed

JP #B Repeat the process

EN End

Instruction Function

#A Label

V3=5 Initial position ratio

DP0 Define the starting position

JG0 Set motor in jog mode as zero

BGX Start

#B

V1=@AN[1] Read analog input

V2=V1*V3 Compute the desired position

V4=V2-_TPX-_TEX Find the following error

V5=V4*20 Compute a proportional speed

JG V5 Change the speed

JP #B Repeat the process

EN End
340

LEGEND-MC User’s Manual
Backlash Compensation by Dual-Loop
This design example addresses the basic problems of backlash in motion control systems. The objective
is to control the position of a linear slide precisely. The slide is to be controlled by a rotary motor, which
is coupled to the slide by a leadscrew. Such a leadscrew has a backlash of 4 micron, and the required
position accuracy is for 0.5 micron.

The dilemma is where to mount the sensor. A rotary sensor, gives a 4-micron backlash error. If a linear
encoder is used, the backlash in the feedback loop will cause oscillations due to instability.

An alternative approach is the dual-loop, using two sensors, rotary and linear. The rotary sensor assures
stability (because the position loop is closed before the backlash); the linear sensor provides accurate
load position information. The principle is to drive the motor to a given rotary position near the final
point. The load position is then read to find position error and the controller commands the motor to
move to a new rotary position which eliminates the position error.

Since the required accuracy is 0.5 micron, the resolution of the linear sensor should preferably be twice
finer. A linear sensor with a resolution of 0.25 micron allows a position error of +/-2 counts.

The dual-loop approach requires the resolution of the rotary sensor to be equal or better than that of the
linear system. Assuming that the pitch of the lead screw is 2.5mm (approximately 10 turns per inch), a
rotary encoder of 2500 lines per turn or 10,000 count per revolution results in a rotary resolution of 0.25
micron. This results in equal resolution on both linear and rotary sensors.

To illustrate the control method, assume that the rotary encoder is used as a feedback for the X-axis, and
that the linear sensor is read and stored in the variable LINPOS. Further assume that at the start, both the
position of X and the value of LINPOS are equal to zero. Now assume that the objective is to move the
linear load to the position of 1000.

The first step is to command the X motor to move to the rotary position of 1000. Once it arrives we check
the position of the load. If, for example, the load position is 980 counts, it implies that a correction of 20
counts must be made. However, when the X-axis is commanded to be at the position of 1000, suppose
that the actual position is only 995, implying that X has a position error of 5 counts, which will be
eliminated once the motor settles. This implies that the correction needs to be only 15 counts, since 5
counts out of the 20 would be corrected by the X-axis. Accordingly, the motion correction should be:

Correction = Load Position Error - Rotary Position Error

The correction can be performed a few times until the error drops below +/-2 counts. Often, this is
performed in one correction cycle.
341

LEGEND-MC User’s Manual
Example Motion Program:

Instruction Function

#A Label

DP0 Define starting positions as zero

LINPOS=0

PR 1000 Required distance

BGX Start motion

#B

AMX Wait for completion

WT 50 Wait 50 msec

LIN POS = _DEX Read linear position

ER=1000-LINPOS-_TEX Find the correction

JP #C,@ABS[ER]<2 Exit if error is small

PR ER Command correction

BGX

JP #B Repeat the process

#C

EN
342

LEGEND-MC User’s Manual
11 Troubleshooting
Overview

The following discussion may help you get your system running if a problem is encountered.

Potential problems have been divided into groups as follows:

1. Installation

2. Stability and Compensation

3. Operation

The various symptoms along with the cause and the remedy are described in the following tables.

Installation

Stability

Symptom Cause Remedy

Motor runs away when connected to amplifier
with no additional inputs.

Amplifier offset
too large.

Adjust amplifier offset

Same as above, but offset adjustment does not
stop motor.

Damaged
amplifier.

Replace amplifier.

Controller does not read changes in encoder
position.

Wrong encoder
connections.

Check encoder wiring.

Same as above Bad encoder Check the encoder
signals. Replace encoder
if necessary.

Same as above Bad controller Connect the encoder to
different axis input. If it
works, controller failure.
Repair or replace.

Symptom Cause Remedy

Motor runs away when the
loop is closed.

Wrong feedback polarity.
(Positive Feedback)

Invert the polarity of the loop by
inverting the motor leads (brush
type) or the encoder (channel A+,
B+ if single ended; channel A+, A-
and B+, B- if differential)

Motor oscillates. Too high gain or too little
damping.

Decrease KI and KP. Increase KD.
343

Operation

Symptom Cause Remedy

Controller rejects command.
Responded with a ?

Anything. Interrogate the cause with TC
or TC1.

Motor does not start or
complete a move.

Noise on limit switches stops
the motor. Noise on the abort
line aborts the motion.

To check the cause,
interrogate the stop code
(SC). If caused by limit
switch or abort line noise,
reduce noise.

During a periodic operation,
motor drifts slowly.

Encoder noise Interrogate the position
periodically. If controller
states that the position is the
same at different locations it
implies encoder noise. Also
use a scope to see the noise.
Reduce noise. Use differential
encoder inputs.

Same as above. Programming error. Avoid resetting position error
at end of move with SH
command.

Legend–MC User’s Manual
12 Index

A
Abort 252 264 267

Off-On-Error 53
Stop Motion 264 267

Absolute Position 261 293
Absolute Value 271 292
Absolute value 257 291 301
Acceleration 252 256 288 315 325 327
Address

Jumpers 37
After Absolute Position 254 284
After Distance 254 284 287
After Input 254 284 318
After Move 305 318
After Relative Distance 254
After Vector Distance 254 284 288
Analog feedback 255
Analog Output 63
Arm Latch 255 327
Array 259 276
Arrays 88 255 281 306

Automatic Record 194
Dimension 255 306
Download 255
Record 255 307

At Speed 254 288
Automatic Record 194
Automatic Subroutine

MCTIME 162

B
Backlash 259
Backlash Compensation

Dual Loop 259
Backlash compensation 341
Baud Rate 38
Begin Motion 70 252 282 286 297 303
308 315 319 327 334
Burn

Program 21 252 254 255 281 305
315 338 339 342

Variables 255

C
Cam Cycles 252
Capture Data

Record 259 276 277
Clear Bit 255 317
Clear Sequence 264 266 267 268
Clock 223 304

Update Rate 223

C

C

C

C

C
C
C
C

C

C
C
C

D
D
D

D

D
D

D
D

ode 122 134 162
Command Summary 261 263 266 268

ommunication 87 282 296
Baud Rate 38
Handshake 38

ompensation
Backlash 259

onfigure 249 252 311
Configure Encoder 255

ontour Data 252 284
ontour Mode 77 259
ontour mode 252
ontrol Filter

Damping 343
oordinated Motion 234 239 259 267

Contour Mode 259
Ecam 103 271
Electronic Cam 97 259 271 272
Electronic Gearing 259 270
Gearing 259 270
Linear Interpolation 259 264 267 275

oordinated motion 250 253
osine 257 259 300 306
ycle Time

Clock 223

amping 24 96 256 343
ata Capture 193

Automatic Record 194
ata capture 307

Arrays 255 281 306
Debugging 227 284

eceleration 53 252 327
efault Setting

Master Reset 223
efine Position 255 313 319
erivative Constant 256

Differential Encoder 344
Digital Filter

Damping 96
Feedforward 55
Integrator 144
Stability 96

Digital filter 31 249
Damping 24 256
Feedforward 256
Gain 24 30 311
Integrator 24 27 256
PID 24 27 32
Stability 24 29 341
Velocity feedforward 256
345

LEGEND–MC User’s Manual
Digital inputs 318
Digital outputs 317
Dimension 255 306
DMA 189
Download 255

Array 255
Dual Encoder

Backlash 259
Dual Loop 259

Dual encoder 255 256 308
Dual Loop 259

Backlash 259
Dual loop 256

E
ECAM 109
Ecam 103 271

Electronic Cam 259 271 272
Echo 214 255
Editor 101
Electronic CAM 109
Electronic Cam 259 271 272
Electronic Gearing 119 259 270

Gearing 119
Encoder 24 26 28 30 252 255 256 282
285 308 327 338 339

Differential 344
Dual loop 256
Index 252
Index Pulse 122 278
Quadrature 57 64 65 71

Encoders 60
Auxiliary Encoders 78 91
Index 113

Error
Handling 197 282

Error Code 122 134 162
Error Limit 228 257 297

Off-On-Error 53
Excessive Error 177
Execute Program 123 124 126
Execute program 254

F
Feedforward 55 256
Feedforward Acceleration 112
Feedrate 265 268
Filter Parameter

Damping 343
Stability 343

Find Edge 252 278
Find Index 252
Formatting 252 311 313

Hexadecimal 182 237 312 313
346
Forward Motion 284 338
Forward Software Limit 257
Function 264 276 279

G
Gain 24 30 311
Gear Ratio 253 270
Gearing 119 253 259 270

H
Halt 254 264 283 284 289 318

Abort 264 267
Off-On-Error 53
Stop Motion 264 267

Hardware
Offset Adjustment 343

Home Input 278
Home Inputs 83
Homing 122 278

Find Edge 278

I
I/O

Home Input 278
IF conditional 128
IF Statement

ENDIF 106
Increment Position 253
Independent Motion

Jog 210 263 327
Index 113 252
Index Pulse 122 278
Input Interrupt 214
Inputs 283 307 318

Digital inputs 318
Index 113 252
Input variable 254
Interrupt 254 282 288 297
Limit Switch 83
Limit switch 282 296 304

LEGEND–MC User’s Manual
Installation 343
Integrator 24 27 144 256
Interrupt 59 134 214 254 282 288 296
Invert 343

J
Jog 210 252 263 287 297 303 311 327
340
Joystick 303 339
Jump to Program Location 254
Jump to Subroutine 254 284 289
Jumpers 37

K
Keywords 290 302

L
Label 162 273 320 327 332

Special Label 162
Latch 279

Arm Latch 327
Position Capture 279
Record 259 276 277
Teach 277

Limit Switch 83 134 207 214 344
Limit switch 282 296 304
Linear Interpolation 252 259 264 267 275

Clear Sequence 264 266 267 268
Linear Interpolation Distance 253
Linear Interpolation End 253
Linear Interpolation Mode 253
List 255
Logical Operators 141
Logical operators 290

M
Master Axis for Gearing 253
Master Reset 223
Math Function

Absolute Value 271 292
Cosine 259
Sine 259 273

Math Functions
Absolute Value 104
Logical Operators 141

Math functions
Absolute value 257 291 301
Cosine 257 300 306
Logical operators 290
Sine 257 301

MCTIME 162
Memory 249 281 297 328

Array 259 276
Message 134 320
Motion Complete 254 281 284 291

MCTIME 162

M

M
M

M

M

N
N

O
O

O

O

P
P

P

P

otion Smoothing 260 277
S-Curve 264 326
VT 240

otor command 27
otor Off 255

Motor Type 255
oving

Acceleration 252 256 288 315 325 327
Begin Motion 70
Begin motion 252 282 286 297 303

308 315 319 327 334
Contour Mode 77
Contour mode 252
Deceleration 252 327
Home Inputs 83
Jog 252 287 297 303 311 340
Linear Interpolation 252
Slew Speed 90
Slew speed 285 288 338
Vector mode 319

ultitasking 126 243 283
Halt 264

o Operation 254

E
Off-On-Error 53

Off on Error 257
ff-On-Error 53

Offset 256
Offset Adjustment 343

ptoisolation
Home Input 278

Outputs 24 26 30 75 252 317 338
Digital outputs 317
Motor command 27
Output Bit 255 287 296 317 339
Output Port 255

ID 24 27 32
Play Back 259

lay back 308
POSERR

Position Error 57
osition Absolute 253 291

Position Capture 60 279
Latch 279
Teach 277
347

LEGEND–MC User’s Manual
Position Error 57 344
Position Format 251 255 313
Position Latch 60
Position Relative 249 253
Program Flow 109

Interrupt 134 214
Programming 21 252

Halt 264
Proportional Constant 256
Protection

Error Limit 228

Q
Quadrature 57 64 65 71
Quit

Abort 264 267
Stop Motion 264 267

R
Record 259 276 277

Latch 279
Position Capture 279
Teach 277

Record Array 193
Reset 87 223 255 289 304

Master Reset 223
Standard 223

Reverse Motion 284
Reverse Software Limit 257

S
Sample Time

Update Rate 223
Sample time 252 256
S-Curve 264 326

Motion Smoothing 260 277
Set Bit 255 317
Sine 259 273
Slew 210 261 278
Slew Speed 90
Slew speed 285 288 338
Smoothing 260 264 266 267 268 277
Special Label 162
Specification 268
Stability 24 29 96 341 343
Standard Reset 223
Status 87 102 126 177 266

Stop Code 344
Step Motor

KS, Smoothing 260 264 266 267 268
277

Stop 212
Abort 264 267
348
Stop Code 122 134 162 256 308 344
Stop Motion 264 267
Subroutine 254 282 289
Subroutine Stack 131
Subroutine stack 254 295
Synchronization 271

T
Teach 193 277

Latch 279
Play-Back 259
Position Capture 279
Record 259 276 277

Tell Error 256 313
Position Error 57

Tell Position 37 251 256 287 303 306 313
Tell Status 251 256
Tell Switches 256
Tell Torque 257
Tell Velocity 257
Terminal 87
Theory

Damping 343
Stability 343

Time 22 249 251 281 284 289 291 304
Clock 223
Sample time 252 256
Update Rate 223

Time Interval 275 332
Timeout 162

MCTIME 162
Torque limit 256
Trace 256 284
Trippoint 57 64 65 127 162 261 264
268 276

Motion Complete 284
Trippoints 65 131 284

After Absolute Position 254 284
After Distance 254 284 287
After Input 254 284 318
After Move 305 318
After Relative Distance 254
After Vector Distance 254 284 288
At Speed 254 288
Forward Motion 284 338
Motion Complete 254 281 284 291

Tuning
Stability 343

LEGEND–MC User’s Manual
U
Update Rate 223
Upload 92 255

V
Variable 251 254 281 290 300 311 314
317 339

Format 256 314
Vector

Acceleration 253
Deceleration 253
Position 253 288 295
Sequence end 253
Speed 253 288 319
Vector mode 319

Vector Acceleration 266 268
Vector Deceleration 266 268
Vector Mode

Clear Sequence 264 266 267 268
Feedrate 265 268

Vector Speed 264 268
Velocity feedforward 256

W
Wait for Contour Data 254 284
349

YASKAWA ELECTRIC AMERICA, INC.
Chicago-Corporate Headquarters 2121 Norman Drive South, Waukegan, IL 60085, U.S.A.
Phone: (847) 887-7000 Fax: (847) 887-7310 Internet: http://www.yaskawa.com
MOTOMAN INC.
805 Liberty Lane, West Carrollton, OH 45449, U.S.A.
Phone: (937) 847-6200 Fax: (937) 847-6277 Internet: http://www.motoman.com
YASKAWA ELECTRIC CORPORATION
New Pier Takeshiba South Tower, 1-16-1, Kaigan, Minatoku, Tokyo, 105-0022, Japan
Phone: 81-3-5402-4511 Fax: 81-3-5402-4580 Internet: http://www.yaskawa.co.jp
YASKAWA ELETRICO DO BRASIL COMERCIO LTDA.
Avenida Fagundes Filho, 620 Bairro Saude Sao Paolo-SP, Brasil CEP: 04304-000
Phone: 55-11-5071-2552 Fax: 55-11-5581-8795 Internet: http://www.yaskawa.com.br
YASKAWA ELECTRIC EUROPE GmbH
Am Kronberger Hang 2, 65824 Schwalbach, Germany
Phone: 49-6196-569-300 Fax: 49-6196-888-301 Internet: http://www.yaskawa.de
MOTOMAN ROBOTICS AB
Box 504 S38525, Torsas, Sweden
Phone: 46-486-48800 Fax: 46-486-41410
MOTOMAN ROBOTEC GmbH
Kammerfeldstrabe 1, 85391 Allershausen, Germany
Phone: 49-8166-900 Fax: 49-8166-9039
YASKAWA ELECTRIC UK LTD.
1 Hunt Hill Orchardton Woods Cumbernauld, G68 9LF, Scotland, United Kingdom
Phone: 44-12-3673-5000 Fax: 44-12-3645-8182
YASKAWA ELECTRIC KOREA CORPORATION
Paik Nam Bldg. 901 188-3, 1-Ga Euljiro, Joong-Gu, Seoul, Korea
Phone: 82-2-776-7844 Fax: 82-2-753-2639
YASKAWA ELECTRIC (SINGAPORE) PTE. LTD.
Head Office: 151 Lorong Chuan, #04-01, New Tech Park Singapore 556741, SINGAPORE
Phone: 65-282-3003 Fax: 65-289-3003
TAIPEI OFFICE (AND YATEC ENGINEERING CORPORATION)
10F 146 Sung Chiang Road, Taipei, Taiwan
Phone: 886-2-2563-0010 Fax: 886-2-2567-4677
YASKAWA JASON (HK) COMPANY LIMITED
Rm. 2909-10, Hong Kong Plaza, 186-191 Connaught Road West, Hong Kong
Phone: 852-2803-2385 Fax: 852-2547-5773
BEIJING OFFICE
Room No. 301 Office Building of Beijing International Club,
21 Jianguomanwai Avenue, Beijing 100020, China
Phone: 86-10-6532-1850 Fax: 86-10-6532-1851
SHANGHAI OFFICE
27 Hui He Road Shanghai 200437 China
Phone: 86-21-6553-6600 Fax: 86-21-6531-4242
SHANGHAI YASKAWA-TONJI M & E CO., LTD.
27 Hui He Road Shanghai 200437 China
Phone: 86-21-6533-2828 Fax: 86-21-6553-6677
BEIJING YASKAWA BEIKE AUTOMATION ENGINEERING CO., LTD.
30 Xue Yuan Road, Haidian, Beijing 100083 China
Phone: 86-10-6232-9943 Fax: 86-10-6234-5002
SHOUGANG MOTOMAN ROBOT CO., LTD.
7, Yongchang-North Street, Beijing Economic & Technological Development Area,
Beijing 100076 China
Phone: 86-10-6788-0551 Fax: 86-10-6788-2878
YEA, TAICHUNG OFFICE IN TAIWAN
B1, 6F, No. 51, Section 2, Kung-Yi Road, Taichung City, Taiwan, R.O.C.
Phone: 886-4-2320-2227 Fax: 886-4-2320-2239
Phone: 55-11-5071-2552 Fax: 55-11-5581-8795 Internet: http://www.yaskawa.com.br

Yaskawa Electric America, Inc., July 2004 YEA-SIA-SMC-1.2D Printed in U.S.A.

	LEGEND-MC
	User’s Manual
	TABLE OF CONTENTS
	1 Introduction
	The LEGEND-MC is a single axis Ethernet motion controller designed for use exclusively with Yaskawa’s LEGEND Digital Torque Amplifier.
	It provides a structured text programming environment and the ability to perform many modes of motion including camming, gearing, and contouring. High speed product registration is also available as a standard feature.
	Additionally, point-to-point control and communications over the Ethernet connections are standard features. The Ethernet function allows multiple handles or devices to communicate with the controller.
	Part Numbers
	Start-up
	Mounting the LEGEND-MC to the LEGEND Amplifier
	Mounting Orientation

	Front Panel Description
	No.
	Name

	Power/Connections Wiring - Single Phase
	Power/Connections Wiring - Three Phase
	Cable Shielding, Segregation and Noise Immunity
	I/O Connections (50-pin CN5)
	Analog I/O
	Analog Input
	Analog Output

	Digital I/O
	Digital Input
	Digital Output

	Emergency Stop Chain
	Serial Communication
	External Encoder Specifications
	Dedicated Inputs
	Physical Specifications
	Hardware Specifications
	Cable Diagram and Dimensional Drawings
	I/O Cable with Terminal Block JUSP-TA50P

	NOTES:

	2 Theory of Operation
	Overview
	The following discussion covers the operation of motion control systems. A typical motion control system consists of the elements shown in the following illustration:
	The operation of such a system can be divided into three levels, as shown in the following illustration Levels of Control Functions. The levels are:
	The first level, the closing of the loop, assures that the motor follows the commanded position. Closing the position loop using...
	The motion profiling is the generation of the desired position function. This function, R(t), describes where the motor should b...
	The highest level of control is the motion program. This can be stored in the host computer or in the controller. This program describes the tasks in terms of the motors that need to be controlled, the distances and the speed.

	Level
	The three levels of control may be viewed as different levels of management. The top manager, the motion program, may specify the following instruction, for example.
	This program corresponds to the velocity profiles shown in the following illustration - Velocity and Position Profiles. Note that the profiled positions show where the motors must be at any instant of time.
	Finally, it remains up to the servo system to verify that the motor follows the profiled position by closing the servo loop.
	The operation of the servo system is done in two manners. First, it is explained qualitatively, in the following section. Later, the explanation is repeated using analytical tools for those who are more theoretically inclined.

	Operation of Closed-Loop Systems
	To understand the operation of a servo system, we may compare it to a familiar closed-loop operation, adjusting the water temper...
	The closing of the servo loop is very similar. Suppose that we want the motor position to be at 90 degrees. A position sensor, o...
	The analogy between adjusting the water temperature and closing the position loop carries further. We have all learned that the ...
	The results may be worse if we turn the faucet too fast. The overreaction results in temperature oscillations. When the response...
	What causes the oscillations? The basic cause for the instability is a combination of delayed reaction and high gain. In the cas...
	Servo systems also become unstable if their gain is too high. The delay in servo systems is between the application of the curre...
	This motion controller includes a special filter that is designed to help the stability and accuracy. Typically, such a filter p...
	The filter parameters are represented by the three constants KP, KI and KD, which correspond to the proportional, integral and derivative term respectively.
	The damping element of the filter acts as a predictor, thereby reducing the delay associated with the motor response.
	The integrator function, represented by the parameter KI, improves the system accuracy. With the KI parameter, the motor does not stop until it reaches the desired position exactly, regardless of the level of friction or opposing torque.
	The integrator also reduces the system stability. Therefore, it can be used only when the loop is stable and has a high gain.
	The output of the filter is applied to a digital-to-analog converter (DAC). The resulting output signal in the range between +10 and -10 Volts is then applied to the amplifier and the motor.
	The motor position, whether rotary or linear is measured by a sensor. The resulting signal, called position feedback, is returned to the controller for closing the loop.
	The following section describes the operation in a detailed mathematical form, including modeling, analysis and design.

	System Modeling
	The elements of a servo system include the motor, driver, encoder and the controller. These elements are shown in the following illustration. The mathematical model of the various components is given below:
	Controller
	Motor-Amplifier
	The motor amplifier is configured for current mode:

	Current Drive
	The current drive generates a current I, which is proportional to the input voltage, V, with a gain of Ka, a torque constant of Kt, and inertia J. The resulting transfer function in this case is:
	For example, a current amplifier with Ka = 2 A/V with the motor described by the previous example will have the transfer function:

	Encoder
	The encoder generates N pulses per revolution. It outputs two signals, Channel A and B, which are in quadrature. Due to the quadrature relationship between the encoder channels, the position resolution is increased to 4N quadrature counts/rev.
	The model of the encoder can be represented by a gain of:
	For example, a 1000 lines/rev encoder is modeled as:

	DAC
	The DAC or D-to-A converter converts a 16-bit number to an analog voltage. The input range of the numbers is 65536 and the output voltage range is +/-10V or 20V. Therefore, the effective gain of the DAC is:

	Digital Filter
	The digital filter has a transfer function of D(z) = K(z-A)/z + Cz/z-1 and a sampling time of T.
	The filter parameters, K, A and C are selected by the instructions KP, KD, KI or by GN, ZR and KI, respectively. The relationship between the filter coefficients and the instructions are:
	This filter includes a lead compensation and an integrator. It is equivalent to a continuous PID filter with a transfer function G(s).
	For example, if the filter parameters are KP = 4:
	the digital filter coefficients are:

	ZOH
	The ZOH, or zero-order-hold, represents the effect of the sampling process, where the motor command is updated once per sampling period. The effect of the ZOH can be modeled by the transfer function
	If the sampling period is T = 0.001, for example, H(s) becomes:
	However, in most applications, H(s) may be approximated as one.
	This completes the modeling of the system elements. Next, we discuss the system analysis.

	System Analysis
	To analyze the system, we start with a block diagram model of the system elements. The analysis procedure is illustrated in terms of the following example.
	Consider a position control system with the LEGEND-MC controller and the following parameters:
	The transfer function of the system elements are:
	Motor:
	Amp:
	DAC:
	Encoder:
	ZOH:
	Digital Filter:
	Therefore,:
	Accordingly, the coefficients of the continuous filter are:
	The filter equation may be written in the continuous equivalent form:
	The system elements are shown in the following illustration:
	The open loop transfer function, A(s), is the product of all the elements in the loop:
	To analyze the system stability, determine the crossover frequency, wc at which A(j wc) equals one. This can be done by the Bode plot of A(j wc), as shown in the following illustration:
	Bode plot of the open loop transfer function
	For the given example, the crossover frequency was computed numerically resulting in 200 rad/s.
	Next, we determine the phase of A(s) at the crossover frequency:
	Finally, the phase margin, PM, equals:
	As long as PM is positive, the system is stable. However, for a well damped system, PM should be between 30 degrees and 45 degrees. The phase margin of 70 degrees given above indicated overdamped response.
	Next, we discuss the design of control systems.

	System Design and Compensation
	The closed-loop control system can be stabilized by a digital filter, which is pre-programmed in the LEGEND-MC controller. The f...
	The Analytical Method
	The analytical design method is aimed at closing the loop at a crossover frequency, wc, with a phase margin PM. The system parameters are assumed known. The design procedure is illustrated by a design example.
	Consider a system with the following parameters:
	The DAC of the LEGEND-MC outputs +/-10V for a 14-bit command of +/-8192 counts.
	The design objective is to select the filter parameters in order to close a position loop with a crossover frequency of wc = 500 rad/s and a phase margin of 45 degrees.
	The first step is to develop a mathematical model of the system, as discussed in the previous system.
	Motor:
	Amp:
	DAC
	Encoder:
	ZOH:
	Compensation Filter:
	The next step is to combine all the system elements, with the exception of G(s), into one function, L(s):
	Then the open loop transfer function, A(s), is:
	Now, determine the magnitude and phase of L(s) at the frequency wc = 500:
	This function has a magnitude of:
	and a phase:
	G(s) is selected so that A(s) has a crossover frequency of 500 rad/s and a phase margin of 45 degrees. This requires that:
	However, since:
	then it follows that G(s) must have magnitude of:
	and a phase:
	In other words, we need to select a filter function G(s) of the form:
	so that at the frequency wc =500, the function would have a magnitude of 40 and a phase lead of 59 degrees.
	These requirements may be expressed as:
	and:
	The solution of these equations leads to:
	Therefore:
	and:
	The function G is equivalent to a digital filter of the form:
	where:
	and:
	Assuming a sampling period of T=1ms, the parameters of the digital filter are:
	The LEGEND-MC can be programmed with the instruction:
	In a similar manner, other filters can be programmed. The procedure is simplified by the following table, which summarizes the relationship between the various filters.

	Notch Filter
	There are some applications in which the standard tuning procedure using the PID filter of the controller cannot completely elim...
	The notch filter is an advanced tuning technique that acts much like a “band-reject” filter in an electronic circuit. Certain fr...
	If a system oscillates at a specific point, then the first thing to do is find out at what frequency it occurs. The easiest way ...
	This will be the center frequency for your notch filter, specified as NF. To get the other two parameters, it is easiest to look at an example that shows their relationship to the command output. See the graphs below:
	These graphs show how NF, NB, and NZ determine the characteristics of the filter. In particular, NB specifies the bandwidth that...
	A simple method for attaining your NF,NB, and NZ parameters is the following:
	Although the theory behind a notch filter is beyond the scope of this application note, a general overview may clarify how the n...
	Resonance shows up as a pair of complex poles with a real part. A notch filter attempts to cancel the unwanted poles by placing ...
	A notch filter can be extremely helpful when used properly, however it is not right for every system. Incorrect placement of the...

	3 Communications
	Introduction
	The LEGEND-MC has one RS232 port and one Ethernet port. The RS-232 is a standard serial link with communication baud rates up to 19.2kbaud. The Ethernet port is a 10Base-T link.
	Controller Response to Data
	Most LEGEND-MC instructions are represented by two characters followed by the appropriate parameters. Each instruction must be terminated by a carriage return or semicolon.
	Instructions are sent in ASCII, and the LEGEND-MC decodes each ASCII character (one byte) one at a time. It takes approximately .5 msec for the controller to decode each command.
	After the instruction is decoded, the LEGEND-MC returns a colon (:) if the instruction was valid or a question mark (?) if the instruction was not valid or was not recognized.
	For instructions requiring data, such at Tell Position (TP), the LEGEND-MC will return the data followed by a carriage return, line feed and : .
	It is good practice to check for : after each command is sent to prevent errors. An echo function is provided to enable associating the LEGEND-MC response with the data sent. The echo is enabled by sending the command EO 1 to the controller.

	RS232 Port
	The LEGEND-MC has a single RS232 connection for sending and receiving commands from a PC or other terminal. The pin connections for the RS232 connection are as follows.
	Port 1 DATATERM
	Configuration
	Although Yaskawa’s YTerm software automatically configures the port you may need to manually configure the PC’s serial port if using third party software.
	Configure your PC for 8-bit data, one start-bit, one stop-bit, full duplex and no parity. The baud rate for the RS232 communication can be chosen by selecting the proper jumper configuration on the LEGEND- MC according to the table below.

	Handshaking Modes
	The RS232 port is configured for hardware handshaking. In this mode, the RTS and CTS lines are used. The CTS line will go high w...
	If a device that is used in conjunction with the LEGEND-MC does not support hardware handshaking, solder a jumper across the CTS...

	SMC Protocol Guidelines
	The following items outline details of the simple ASCII communication protocol which the LEGEND- MC implements. NOTE: throughout this section, strings are enclosed in single quotes, and characters are enclosed in greater than / less than signs < >.

	Ethernet Configuration
	Communication Protocols
	The Ethernet is a local area network through which information is transferred in units known as packets. Communication protocols...
	TCP/IP is a "connection" protocol. The master must be connected to the slave in order to begin communicating. Each packet sent is acknowledged when received. If no acknowledgement is received, the information is assumed lost and is resent.
	Unlike TCP/IP, UDP/IP does not require a connection. This protocol is similar to communicating via RS232. If information is lost...
	Although UDP/IP is more efficient and simple, Yaskawa recommends using the TCP/IP protocol. TCP/ IP insures that if a packet is lost or destroyed while in transit, it will be resent.
	Ethernet communication transfers information in ‘packets’. The packets must be limited to 470 data bytes or less. Larger packets could cause the controller to lose communication.

	Addressing
	There are three levels of addresses defining Ethernet devices. The first is the Ethernet or hardware address- a unique and perma...
	The second level of addressing is the IP address. This is a 32-bit (or 4 byte) number. The IP address is constrained by each local network and must be assigned locally. Assigning an IP address to the controller can be done in a number of ways.
	The first method is to use the BOOT-P utility via the Ethernet connection (the LEGEND-MC must be connected to the network and powered). For an explanation of BOOT-P see Third Party Software.
	The second method for setting an IP address is to send the IA command through the LEGEND-MC main RS-232 port. The IP address you...
	The third level of Ethernet addressing is the UDP or TCP port number. The Yaskawa controller does not require a specific port number. The port number is established by the master each time it connects to the controller.

	Ethernet Handles
	An Ethernet handle is a communication resource within a device. The LEGEND-MC can have a maximum of 16 Ethernet handles open at ...

	Global vs. Local Operation
	Each LEGEND-MC controls one axis of motion, referred to as A or X. The host computer can communicate directly with any LEGEND-MC...
	The LEGEND-MC supports Yaskawa’s control system. This allows up to four LEGEND-MC controllers to be connected together as a sing...
	Here is a simple way to view Local and Global Operation; when the host communicates with a slave controller, it considers the sl...
	The controllers may operate under both Local and Global Mode. In general, operating in Global Mode simplifies controlling the en...

	Configuring Operation for Distributed Control (Obsolete Method < 1.0c firmware)
	Each LEGEND-MC must be assigned an IP address. This can be done with the BOOT-P procedure or the IA command can be used to assig...
	Upon power-up or reset, the master LEGEND-MC will establish each slave connection. The following steps must be taken while connected to the master LEGEND-MC:
	1. Using the IH command, open two handles for each slave. Each slave controller must have 2 open handles, one for commands from ...
	IHh=ip0,ip1,ip2,ip3<p>2 h is the handle. ip is the slave IP address. <p specifies port number. >2 specifies TCP/IP.
	2. Set the total number of axes in the system with the NA command. For example, assume there are two LEGEND-MC slaves, therefore there will be three axes and the command would be NA3.
	3. Connect each slave handle to the master. This is accomplished with the CH command. The format of this command is:
	CHa=h1,h2 where a is the first axis designator of the slave controller, h1 is the handle for commands and h2 is the handle for slave status.
	4. For the master controller to make decisions based on the status of the slave controllers, it is necessary for the slaves to g...
	QWh=n where h is the handle. n is a number between 4 and 16000.
	n sets the number of samples (msec with default TM1000).
	n equal to 0 disables the mode.
	The data contained in the record is as follows:
	. (RP) reference position
	. (TP) encoder position
	. (TE) position error
	. (TV) velocity
	. (TT) torque
	. (TS) limit and home switches
	. (TS) axis status (in motion, motor of, at speed, stopcode)
	. (TI) uncommitted inputs
	. (OP) uncommitted outputs

	Operation of Distributed Control
	For most commands it is unnecessary to be conscious of whether an axis is local or remote. For example, to set the KP value for the X and Z axes, the command for the master would be:
	KP 10,,20
	Similarly, the interrogation commands can also be issued. For example, the position error for all axes would be TE. The position operand for the F axis would be _TPF.
	Some commands are inherently sent to all controllers. These include commands such as AB (Abort), CN and TM.
	Certain commands need to be launched specifically. For this purpose there is the SA command. In its simplest form the SA command is:
	SAh=”command string”
	Here “command string” will be sent to handle h. For example, the SA command is the means for sending an XQ command to a slave. A more flexible form of the command is:
	SAh=field1,field2,field3,field4...field8 Where each field can be a string in quotes or a variable.
	When the master sends an SA command to a slave, it is possible for the master to determine the status of the command. The respon...
	If a command generates responses (such as the TE command), the values will be stored in _SAh0 through _SAh7. If a field is unused its _SA value will be -2^31.

	Accessing the I/O of the slaves
	The I/O of the slaves are settable and readable from the master. The bit numbers are adjusted by the handle number of the data record. Each handle adds 100 to the bit number. Handle A is 100 and Handle F is 600.
	Example
	Bit 2 on the slave using handle E for the data record would be 502. The arguments for SB, CB, and OB use this format as does the @IN[] function.
	For byte and word-wide I/O, use the SA command such as: SAC=”OP6” to set the output port of handle C. SAC=”TI” will return the input port on handle C and the operand, _SAC0 will contain the response from the TI command.

	Handling Communication Errors
	If a controller has an application program running and the TCP communication is lost, the #TCPERR routine will automatically execute. See the Special Label Example program in the Example Applications

	Modbus Support
	The Modbus protocol supports communication between masters and slaves. The masters may be multiple PC’s that send commands to the controller. The slaves are typically peripheral I/O devices that receive commands from the controller.
	When the Yaskawa controller acts as the master, the IH command is used to assign handles and connect to its slaves. The IP addre...
	An additional protocol layer is available for speaking to I/O devices. Modbus is an RS-485 protocol that packages information in...
	Modbus protocol has commands called function codes. The LEGEND-MC supports 10 major function codes:
	The LEGEND-MC provides three levels of Modbus communication. The first level allows the user to create a raw packet and receive raw data. It uses the MBh command with a function code of -1. The command format is:
	MBh=-1,len, array[] where len is the number of bytes
	array [] is the array with the data
	The second level incorporates the Modbus structure. This is necessary for sending configuration and special commands to an I/O device. The formats vary depending on the function code that is called. For more information, refer to Command Reference
	The third level of Modbus communication uses standard Yaskawa commands. Once the slave has been configured, the commands that may be used are @IN[], @AN[], SB, CB, OB, and AO. For example, AO 2020,8.2 would tell I/O number 2020 to output 8.2 volts.
	If a specific slave address is not necessary, the I/O number to be used can be calculated with the following:
	I/O Number= (HandleNum*1000)+((Module-1)*4)+(BitNum)
	Where HandleNum is the handle number from 1 (A) to 16 (P). Module is the position of the module in the rack from 1 to 16. BitNum is the I/O point in the module from 1 to 4.
	If an explicit slave address is to be used, the equation becomes:
	I/O Number=(SlaveAddress*1000)+(HandleNum*1000)+((Module-1)*4)+(Bitnum-1)
	Which devices receive what information from the controller depends on a number of things. If a device queries the controller, it...

	Communicating with Multiple Devices
	The LEGEND-MC is capable of supporting multiple masters and slaves. The masters may be multiple PC's that send commands to the controller. The slaves are typically peripheral I/O devices that receive commands from the controller.
	An Ethernet handle is a communication resource within a device. The LEGEND-MC can have a maximum of 8 Ethernet handles open at a...

	Multicasting
	A multicast is only used in UDP/IP and is similar to a broadcast (everyone on the network gets the information) but specific to ...

	Using Third Party Software
	Yaskawa supports ARP, BOOT-P, and Ping, which are utilities for establishing Ethernet connections. ARP is an application that de...
	The LEGEND-MC can communicate with a host computer through any application that can send TCP/IP or UDP/IP packets. A good example of this is Telnet, a utility that comes with most Windows systems.
	NOTE: A command sent over an Ethernet Telnet session must reside in one packet. This means that a Telnet emulator must not send ...

	NOTES:

	4 Command Reference
	Command Description
	Each executable instruction is listed in the following section in alphabetical order.
	The two letter op-code for each instruction is placed in the upper left corner. Below the op-code is a description of the comman...
	Where x, y, z and w are replaced by actual values.
	A ? returns the specified value for that axis. For example, AC ?,?,?,?, returns the acceleration of the X,Y,Z and W axes.
	Other commands require action on the X,Y,Z or W axis to be specified. These commands are followed by uppercase X,Y,Z or W. Actio...
	Where X,Y,Z and W specify axes.
	The usage “Description:” specifies the restrictions on allowable execution. “While Moving” states whether or not the command is ...
	“Can be Interrogated” states whether or not the command can be interrogated by using ? to return the specified value. “Used as a...
	The following table defines terms found in the usage chart for each command:

	AB (Abort)
	[Motion]
	AB (Abort) stops motion instantly without controlled deceleration by freezing the profiler. If there is a program executing, AB ...
	n = 0 aborts motion and program
	n = 1 aborts motion without aborting program
	n = 2 aborts motion on all axes that are connected via ethernet, does not cause error for axes that have lost connection.

	@ABS (Absolute Value)
	[Function]
	@ABS returns the absolute value of a number or variable given in square brackets. Note that the @ABS command is a function, which means that it does not follow the convention of the commands, and does not require the underscore when used as an operand.
	n is a number

	AC (Acceleration)
	[Motion]
	The Acceleration (AC) command sets the linear acceleration rate for independent moves, such as PR, PA and JG moves. The paramete...
	x, y z, w, or a, b, c, d, e, f, g, h are unsigned integers
	_ACn contains the value of acceleration in counts/sec2 where n is an axis letter.

	@ACOS (Arc Cosine)
	[Function]
	@ACOS returns the arc cosine, in degrees, of a number or variable which is inserted in square brackets. Note that the @ACOS comm...
	n is a number

	AD (After Distance)
	[Trippoint]
	The After Distance (AD) command is a trippoint used to control the timing of events. This command will hold up the execution of the following command until one of the following conditions have been met:
	1. The commanded motor position crosses the specified relative distance from the start of the move.
	2. The motion profiling on the axis is complete.
	3. The commanded motion is in the direction which moves away from the specified position.
	The units of the command are quadrature counts. The motion profiler must be on or the trippoint will automatically be satisfied.
	x, y z, w, or a, b, c, d, e, f, g, h are unsigned integers

	AF (Analog Feedback)
	[Configuration]
	The Analog Feedback (AF) command is used to set an axis with analog feedback instead of digital feedback (quadrature/pulse dir)....
	x,y,z,w or a, b, c, d, e, f, g, h
	1 = Enables analog feedback
	0 = Disables analog feedback and switches to digital feedback
	"?" returns a 0 or 1 which states whether analog feedback is enabled for the specified axes.
	_AFn returns the current feedback setting where n is an axis letter

	AI (After Input)
	[Trippoint]
	The AI command is used in motion programs to wait until after the specified input condition has occurred. If n is positive, it w...
	n is a signed integer

	AL (Arm Latch)
	[Setting]
	The AL command enables the latching function (high speed position capture) of the controller. When the AL command is used to arm...

	AM (After Motion)
	[Trippoint]
	The AM command is a trippoint used to control timing of events. This command holds up execution of the following commands until ...

	@AN (Analog Input)
	[Function]
	@AN returns the value of an analog input as a voltage (+/-10V). Note that the @AN command is a function, which means that it doe...
	When using this command to access I/O on a slave controller in distributed control mode, use it with the handle for outbound mas...
	n is an unsigned integer

	AO (Analog Out)
	[I/O]
	The AO command sets the analog output voltage of the local analog output or ModBus devices connected via Ethernet.
	n = the voltage which ranges from 9.9982 to -9.9982. If m is < 1000, n is omitted.

	AP (After Absolute Position)
	[Trippoint]
	The After Position (AP) command is a trippoint used to control the timing of events. This command will hold up the execution of the following command until one of the following conditions have been met:
	1. The commanded motor position crosses the specified absolute position.
	2. The motion profiling on the axis is complete.
	3. The commanded motion is moving away from the specified position.
	The units of the command are quadrature counts. The motion profiler must be active or the trippoint will automatically be satisfied.

	AR (After Relative)
	[Trippoint]
	The After Relative (AR) command is a trippoint used to control the timing of events. This command will hold up the execution of the following command until one of the following conditions have been met:
	1. The commanded motor position crosses the specified relative distance from either the start of the move or the last AR or AD command.
	2. The motion profiling on the axis is complete.
	3. The commanded motion is in the direction which moves away from the specified position.
	The units of the command are quadrature counts. The motion profiler must be active or the trippoint will automatically be satisfied.
	x, y z, w, or a, b, c, d, e, f, g, h are unsigned integers

	AS (At Speed)
	[Trippoint]
	The AS command is a trippoint that occurs when the generated motion profile has reached the specified speed. This command will h...

	@ASIN (Arc Sine)
	[Function]
	@ASIN returns the arc sine, in degrees, of a number or variable which is inserted in square brackets. Note that the @ASIN comman...
	ARGUMENTS: @ASIN [n] where
	n is an unsigned integer

	AT (After Time)
	[Trippoint]
	The AT command is a trippoint which is used to hold up execution of the next command until after the specified time has elapsed....
	n is a signed integer
	n = 0 defines a reference time at current time
	positive n waits n msec from reference
	negative n waits n msec from reference and sets new reference after elapsed time period
	(AT -n is equivalent to AT n; AT 0)
	The following commands are sent sequentially:

	@ATAN (Arc Tangent)
	[Function]
	@TAN returns the arc tangent, in degrees, of a number or variable which is inserted in square brackets. Note that the @ATAN comm...
	n is an unsigned integer

	BG (Begin)
	[Motion]
	The BG command starts motion. When used as an operand, the BG command will return a 1 if there is a commanded motion in progress...
	_BGn contains a ‘0’ if motion complete on the axis, otherwise contains a ‘1’ where n is an axis letter.

	BL (Backward Limit)
	[Setting]
	The BL command sets the reverse software limit. If this limit is exceeded during a commanded motion, the motion will decelerate ...
	x, y z, w, or a, b, c, d, e, f, g, h are signed integers
	“?” returns the reverse software limit value
	-2147483648 turns off the reverse limit.
	_BLn contains the value of the reverse software limit where n is an axis letter.

	BN (Burn Parameters)
	[General]
	The BN command saves certain controller parameters in non-volatile EEPROM memory. This command takes approximately one second to...
	VERY IMPORTANT!

	BP (Burn Program)
	[General]
	The BP command saves the application program in non-volatile EEPROM memory. This command typically takes up to 10 seconds to exe...

	BV (Burn Variables)
	[General]
	The BV command saves the defined variables and arrays in non-volatile EEPROM memory. This command typically takes up to 2 second...

	CB (Clear Bit)
	[I/O]
	The CB command clears a bit on the output port by setting it to logic zero. Slave controller or Modbus outputs can be cleared also.
	When using this command to access I/O on a slave controller in distributed control mode, use it with the handle for outbound mas...
	n is an integer corresponding to a specific output on the controller to be cleared (set to 0). The first output on the controller is denoted as output 1. A LEGEND-MC controller has 4 digital outputs plus applicable I/ O connected by Modbus.
	n = (SlaveAddress*1000) + (HandleNum*1000) + ((Module-1)*4) + (Bitnum-1)
	Slave Address is used when the ModBus device has slave devices connected to it and specified as Addresses 0 to 255. The use of slave devices for modbus are very rare and this number will usually be 0.
	HandleNum is the handle specifier from A to P (1 - 16).
	Module is the position of the module in the rack from 1 to 16.
	BitNum is the I/O point in the module from 1 to 4.

	CD (Contour Data)
	[Motion]
	The CD command specifies the incremental position for an arbitrary motion profile. The units of the command are in quadrature counts. This command is only applicable in the Contour Mode (CM).

	CE (Configure Encoder)
	[Configuration]
	The CE command configures the encoder inputs to the quadrature type or the pulse and direction type. It also allows inverting the polarity. The configuration applies independently to the main axis encoder and the auxiliary encoder inputs.
	Each integer is the sum of two integers r and s which configure the main and the auxiliary encoders according to the chart below.
	“?” returns the encoder inputs
	For example: CEX = 10 implies r = 2 and s = 8, both encoders are reversed quadrature.
	_CEn contains the value of encoder type for the main and auxiliary encoder where n is an axis letter.

	CF (Configure Messages)
	[Configuration]
	Sets the controller’s default port for unsolicited messages. By default, the LEGEND-MC controller will send unsolicited response...
	n is A through P for Ethernet handles 1 thru 16, S for serial port.
	_CF will return the current port selected for unsolicited responses from the controller. The _CF will return a decimal value of the ASCII code.

	CH (Connect Handle)
	[General]
	The CH command is used to associate master and slave controllers in a distributed control system. The master controller must ass...
	x is X, Y, Z, W or A, B, C, D, E, F, G, H.
	h1 is the handle (character) to be used to send commands to the slave controller.
	h2 is the handle (character) to be used for receiving status from the slave controller.
	An example subroutine demonstrating how to release handles:

	CM (Contour Mode)
	[Setting]
	The Contour Mode is initiated by the instruction CM. This mode allows the generation of an arbitrary motion trajectory. The CD command specifies the position increment, and the DT command specifies the time interval.
	The CM? or _CM commands can be used to check the status of the Contour Buffer. A value of 1 returned indicates that the Contour Buffer is full. A value of 0 indicates that the Contour Buffer is empty.
	CM? Returns a 1 if the contour buffer is full, and 0 if the contour buffer is empty.
	_CM contains a ‘0’ if the contour buffer is empty, otherwise contains a ‘1’ meaning the buffer is full.

	CN (Configure Limit Switches)
	[Configuration]
	The CN command configures the polarity of the limit switches, the home switch and the latch input.
	m, n, o are integers .
	_CN0 Contains the limit switch configuration.
	_CN1 Contains the home switch configuration.
	_CN2 Contains the latch input configuration.

	@COM (2’s Complement)
	[Function]
	@COM returns the complement of a number or variable which is inserted in square brackets. Note that the @COM command is a functi...
	n is a number

	@COS (Cosine)
	[Function]
	@COS returns the cosine of a number or variable given in square brackets using units of degrees. Note that the @COS command is a...
	n is a number

	CS (Clear Sequence)
	[General]
	The CS command will remove VP or LI commands stored in a motion sequence. Please note that after a sequence has been run, the CS command is not necessary to enter a new sequence. This command is useful if you have correctly specified VP or LI commands.
	When used as an operand, _CS returns the number of the segment in the sequence, starting at zero. The instruction _CS is valid in the Linear Mode, LM, Vector Mode, VM and Contour Mode, CM .

	CW (Copyright)
	[General]
	The CW command has a dual usage. The CW command will return the copyright information when the argument, n is 0. Otherwise, the ...
	n is a number, either 0,1 or 2:
	0 Causes the controller to return the copyright information
	1 Causes the controller to set the MSB of unsolicited returned characters to 1
	2 Causes the controller to not set the MSB of unsolicited characters.
	“?” Returns the copyright information for the controller
	m is 0 or 1 (optional)
	0 Causes the controller to pause program execution when output FIFO is full until FIFO no longer full.
	1 Causes the controller to continue program execution when output FIFO is full - output characters after FIFO is full will be lost.
	_CW contains the value of the data adjustment bit. 1 =on, 2 = off

	DA (De-allocate Variables)
	[General]
	The DA command frees array and/or variable memory space. With this command, more than one array or variable can be specified for...
	c[0] - Defined array name
	d - Defined variable name
	* - De-allocates all the variables
	*[0] - De-allocates all the arrays
	DA? Returns the number of arrays available on the controller.
	_DA contains the total number of arrays available. For example, before any arrays have been defined, the operand _DA is 14. If one array is defined, the operand _DA will return 13.
	‘Cars’ and ‘Salesmen’ are arrays and ‘Total’ is a variable.

	DB (Dynamic Brake)
	[Configuration]
	The DB command (Dynamic Brake) is used to set or disable the dynamic brake function of the Legend Amplifier. When Dynamic Brakin...
	x, y z, w, or a, b, c, d, e, f, g, h are either 0 or 1.
	_DBn contains the dynamic brake setting where n is an axis letter.

	DC (Deceleration)
	[Motion]
	The Deceleration command (DC) sets the linear deceleration rate for independent moves such as PR, PA and JG moves. The parameters will be rounded down to the nearest factor of 1024 and have units of counts per second squared.
	x, y z, w, or a, b, c, d, e, f, g, h are unsigned integers
	_DCn contains the deceleration rate in counts/sec2 where n is an axis letter.

	DE (Dual (Auxiliary) Encoder)
	[Motion]
	The DE command defines the position of the auxiliary encoder.
	_DEn returns the current position of the specified auxiliary encoder where n is an axis letter.

	DL (Download)
	[General]
	The DL command prepares a controller to accept a data file from the host computer. Instructions in the file will be accepted as a data stream without line numbers. The file is terminated using <control> Z, <control> Q, <control> D, or \.
	If no parameter is specified, downloading a data file will clear any programs in the LEGEND-MC RAM. The data is entered beginnin...
	n = no argument Downloads program beginning at line 0 and erases programs in RAM.
	n = #Label Begins download at line following #Label where label may be any valid program label.
	n = # Begins download at end of program in RAM.
	When used as an operand, _DL gives the number of available labels. The total number of labels is 126.

	DM (Dimension Array)
	[General]
	The DM command defines a single dimensional array with a name and total elements. The first element of the defined array starts with element number 0 and the last element is at n-1.
	c is a name of up to eight alphanumeric characters, starting with an uppercase alphabetic character.
	n is the number of entries from 1 to 8000.
	DM? Returns the number of array elements available.
	_DM contains the available array space. For example, before any arrays have been defined, the operand _DM will return 8000. If an array of 100 elements is defined, the operand _DM will return 7900.

	DP (Define Position)
	[Setting]
	The DP command sets the current motor position and current command positions to a user specified value. The units are in quadrature counts. This command will set both the TP and RP values.
	_DPn reports the current position where n is an axis letter.

	DT (Delta Time)
	[Motion]
	The DT command sets the time interval for Contouring Mode. Sending the DT command once will set the time interval for all follow...
	n is an integer. 0 terminates the Contour Mode.
	n=1 thru 8 specifies the time interval of 2n samples. By default the sample period is 1 msec (set by TM command); with n=1, the time interval would be 2 msec.
	_DT contains the value for the time interval for Contour Mode

	DV (Dual Velocity (Dual Loop))
	[Configuration]
	The DV function changes the operation of the PID servo loop. It causes the KD (derivative) term to operate on the motor, and the...
	n may be 0 or 1. 0 disables the function. 1 enables the dual loop.
	_DVn contains the state of dual velocity mode where n is an axis letter and 0 = disabled, 1 = enabled.

	EA (ECAM Master)
	[Setting]
	The EA command selects the master axis for the electronic cam mode.

	EB (ECAM Enable)
	[Setting]
	The EB function enables or disables the cam mode. In this mode, the master axis is modularized within the cycle. This command does not initiate camming but it readies the controller for cam mode.
	n = 1 starts cam mode and n = 0 stops cam mode.
	EB? Returns a 0 if ECAM is disabled and 1 if enabled.
	_EB contains the state of Ecam mode. 0 = disabled, 1 = enabled

	EC (ECAM Counter)
	[Setting]
	The EC function sets the index into the ECAM table. This command is only useful when entering ECAM table values without index values and is most useful when sending commands in binary. See the command, ET.
	n is an integer between 0 and 256.
	n = ? Returns the current value of the index into the ECAM table.
	_EC contains the current value of the index into the ECAM table.

	ED (Edit Mode)
	[General]
	Using Yaskawa YTerm Software or any other terminal emulator: The ED command puts the controller into the Edit subsystem. In the Edit subsystem, programs can be created, changed or destroyed. The commands in the Edit subsystem are:
	<cntrl>D Deletes a line
	<cntrl>I Inserts a line before the current one
	<cntrl>P Displays the previous line
	<cntrl>Q Exits the Edit subsystem
	<return> Saves a line
	Because the download time for a complete program is usually very short, we recommend all editing be performed by Yaskawa’s YTerm...
	n specifies the line number to begin editing. The default line number is the last line of program space with commands.
	_ED Contains the line number of the last line to have an error. Very useful in tracing field problems.

	EG (ECAM Engage)
	[Motion]
	The EG command engages an ECAM operation at a specified position of the master encoder. If a value is specified outside of the m...
	n is the master position at which the slave axis must be engaged.
	“?” returns 1 if specified axis is engaged and 0 if disengaged
	_EGn contains ECAM status where n is an axis letter. 0 = axis is not engaged, 1 = axis is engaged.

	ELSE
	[Program Flow]
	The ELSE command is an optional part of an IF conditional statement. The ELSE command must occur after an IF command and it has ...

	EM (ECAM Cycle)
	[Setting]
	The EM command is part of the ECAM mode. It is used to define the change in position over one complete cycle of the slave. If a ...
	n is the net change in the slave axis.
	_EMn contains the cam cycle of the slave where n is an axis letter.

	EN (End)
	[Program Flow]
	The EN command is used to designate the end of a program or subroutine. If a subroutine was called by the JS command, the EN command ends the subroutine and returns program flow to the point just after the JS command.
	The EN command is also used to end the automatic subroutines #MCTIME and #CMDERR.
	ARGUMENTS: none

	ENDIF
	[Program Flow]
	The ENDIF command is used to designate the end of an IF conditional statement. An IF conditional statement is formed by the comb...

	EO (Echo)
	[Setting]
	The EO command turns the echo on or off. If the echo is off, characters input to the serial port or Ethernet will not be echoed back.
	n=0 or 1. 0 turns echo off, 1 turns echo on.

	EP (ECam Table Intervals and Start Point)
	[Setting]
	The EP command defines the ECAM table intervals and offset. The offset is the master position where the first ECAM table entry w...
	m, n are signed integers
	_EP contains the value of the interval m.

	EQ (ECam Quit (Disengage))
	[Motion]
	The EQ command disengages an electronic cam slave axis at the specified master position. If a value is specified outside of the master’s range, the slave will disengage immediately.
	n is the master position at which the axis is to be disengaged.
	“?” contains a 1 if engage command issued and slave is waiting to engage, 2 if disengage command issued and slave is waiting to disengage, and 0 if ECAM engaged or disengaged.
	_EQn contains 1 if engage command is issued and slave is waiting to engage, 2 if disengage command is issued and slave is waiting to disengage, and 0 if ECAM engaged or disengaged.

	ER (Error Limit)
	[Setting]
	The ER command sets the magnitude of the position error that will trigger an error condition. When the limit is exceeded, the Er...
	“?” returns the value of the ERror limit.
	_ERn contains the value of the ERror limit where n is an axis letter.

	ET (ECam Table)
	[Setting]
	The ET command sets the ECAM table entries for the slave axis. The values of the master are not required. The slave entry (n) is...
	n is an integer.
	m is an integer.

	FA (Acceleration Feedforward)
	[Setting]
	The FA command sets the acceleration feedforward coefficient, or returns the previously set value. This coefficient, when scaled...
	Acceleration Feedforward Bias = FA × AC × 1.5 × 10-7
	Deceleration Feedforward Bias = FA × DC × 1.5 × 10-7
	The Feedforward Bias product is limited to 10 Volts. FA will only be operational during independent moves, not gearing, camming or interpolation.
	FA has a resolution of .25
	_FAn contains the value of the feedforward acceleration coefficient where n is an axis letter.

	FE (Find Edge)
	[Motion]
	The FE command moves a motor until a transition is seen on the homing input for the associated axis. The direction of motion dep...
	This command is useful for creating your own homing sequences. See the example section.

	FI (Find Index)
	[Motion]
	The FI and BG commands move the motor until an encoder index pulse, or “C” channel, is detected. The controller looks for a tran...

	FL (Forward Limit)
	[Setting]
	The FL command sets the forward software position limit. If this limit is exceeded during commanded motion, the motor will decel...
	When the reverse software limit is activated, the automatic subroutine #LIMSWI will be executed if it is included in the program and the program is executing. See section on Automatic Subroutines.
	_FLn contains the value of the forward software limit where n is an axis letter.

	@FRAC (Fraction)
	[Function]
	@FRAC returns only the fractional portion of a number or variable given in square brackets. Note that the @FRAC command is a fun...
	n is a number

	FV (Velocity Feedforward)
	[Setting]
	The FV command sets the velocity feedforward coefficient, or returns the previously set value. This coefficient generates an output bias signal in proportion to the commanded velocity.
	Velocity feedforward bias = 1.22 × 10-6 × FV × Velocity [in ct/s].
	For example, if FV=10 and the velocity is 200,000 count/s, the velocity feedforward bias equals 2.44 volts.
	_FV contains the velocity feedforward coefficient where n is an axis letter.

	GA (Master Axis for Gearing)
	[Setting]
	The GA command specifies the master axis for electronic gearing.
	The master axis is the auxiliary encoder on the LEGEND-MC. The slave ratio is specified with the GR command and gearing is turned off by the command GR0.

	GR (Gear Ratio)
	[Motion]
	GR specifies the Gear Ratio for the slave axis in electronic gearing mode. The master axis for the LEGEND-MC is specified with t...
	n is a signed number.
	0 disables gearing
	_GRn contains the value of the gear ratio where n is an axis letter.

	HC (Handle Configuration)
	[Configuration]
	The HC command performs all the operations of IH, NA and the QW command for a simplified connection method.
	_HC contains a 0 if the Handle Configuration failed or has not been issued.
	contains a 1 if the Handle Configuration is in progress.
	contains a 2 if the Handle Configuration has completed successfully.

	HM (Home)
	[Motion]
	The HM command performs a three-stage homing sequence.
	The second stage consists of the motor changing directions and slowly approaching the transition again. When the transition is detected, the motor is stopped instantaneously.
	The third stage consists of the motor slowly moving forward until it detects an index pulse from the encoder. It stops at this point and defines it as position 0.
	_HMn contains the state of the Home input. Regardless of the limit switch polarity, where n is an axis letter, 0 always means the home input is active, 1 means inactive.

	HR (Handle Restore)
	[Configuration]
	The HR command is used to enable the automatic restoration of handles that have closed during distributed control communications...
	Handles must be connected using the simplified HC command for the HR function to operate. This command is always set to “disabled” at power up. Use HR1 in the program in your subroutine.
	ARGUMENTS: HRn where
	n = 0 to disable automatic Handle Restore.
	n = 1 to enable automatic Handle Restore.
	HR? returns the present setting of the HR command.

	HS (Handle Switch)
	[Configuration]
	The HS command is used to switch the handle assignments between two handles. Handles are assigned by the controller when the han...
	ARGUMENTS: HS a=b where
	a = the first handle of the switch (A - P)
	b = the second handle of the switch (A - P)
	This example demonstrates a master controller, M2, searching for other controllers on each handle and forcing them to communicat...
	The Jump condition logic below ((_IHA0+4)<>_IA)|(_IHA2<>-2) is basically running the SH (Servo Here) command on the given line if the IP address is not equal to the controller own IP address + 4 and if the connection type is not TCP/IP.

	HW (Handle Wait)
	[Configuration]

	HX (Halt Execution)
	[Program Flow]
	The HX command halts the execution of any of the programs that may be running independently via multitasking. The parameter n specifies the program to be halted.
	n is 0 to 3 to indicate the task number
	When used as an operand, _HX n contains the running status of thread n with:
	0 Thread not running
	1 Thread is running
	2 Thread has stopped at trippoint

	IA (Internet Address)
	[Setting]
	The IA command assigns the controller an IP address.
	The IA command may also be used to specify the time out value. This is only applicable when using the TCP/IP protocol.
	The IA command can only be used via RS-232. Since it assigns an IP address to the controller, communication with the controller via internet cannot be accomplished until after the address has been assigned.
	ip0, ip1, ip2, ip3 are 1 byte numbers separated by commas and represent the individual fields of the IP address.
	n is the IP address for the controller which is specified as an integer representing the signed 32 bit number (two’s complement).
	<t specifies the time in update samples between TCP retries.
	>u specifies the multicast IP address where u is an integer between 0 and 63.
	IA? will return the IP address of the controller
	_IA0 contains the IP address representing a 32 bit signed number (Two’s complement)
	_IA1 contains the value for t (retry time)
	_IA2 contains the number of available handles
	_IA3 contains the number of the handle using this operand where the number is 0 to 15. 0 represents handle A, 1 handle B, etc.
	_IA4 reports the last handle that had a TCP error.

	IF
	[Program Flow]
	The IF command is used in conjunction with an ENDIF command to form an IF conditional statement. The arguments are one or more c...
	Conditions are tested with the following logical operators:

	IH (Internet Handle)
	[Setting]
	The IH command is used when the LEGEND-MC is operated as a network master. This command opens a handle and connects to a slave.
	Each controller may have 16 handles open at any given time. They are designated by the letters A through P. To open a handle, the user must specify:
	The IP address of the slave
	The type of session: TCP/IP or UDP/IP
	The port number of the slave. This number isn’t necessary if the slave device doesn’t require a specific port value. If not specified, the controller specifies the port value as 502.
	_IHh0 contains the IP address as a 32 bit number
	_IHh1 contains the slave port number
	_IHh2 contains a 0 if the handle is free
	contains a 1 if it is for a UDP slave
	contains a 2 if it is for a TCP slave
	contains a -1 if it is for a UDP master
	contains a -2 if it is for a TCP master
	contains a -5 if attempting to connect by UDP
	contains a -6 if attempting to connect by TCP
	_IHh3 contains a 0 if the ARP was successful
	contains a 1 if it has failed or is still in progress.
	_IHh4 contains a 1 if the SA command is waiting for acknowledgement from a slave
	contains a 2 if the SA command received a colon
	contains a 3 if the SA command received a question mark
	contains a 4 if the SA command timed out

	II (Input Interrupt)
	[Configuration]
	The II command enables the interrupt function for the specified inputs. This function triggers when the controller sees a logic change from high to low on a specified input.
	If the #ININT special label is included in the program and any of the specified inputs go low during program execution, the prog...
	To avoid returning to the main program on an interrupt, use the ZS command to zero the subroutine stack and use the II command to re-enable the interrupt.

	IL (Integrator Limit)
	[Tuning]
	The IL command limits the effect of the integrator function in the filter to a certain voltage. For example, IL 2 limits the output of the integrator to the +/-2 Volt range. This is very effective in allowing higher KI values without adding instability.
	A negative parameter also freezes the effect of the integrator during a move. For example, IL -3 limits the integrator output to...
	_ILn contains the value of the integrator limit in volts where n is an axis letter.

	IN (Input Variable)
	[General]
	The IN command allows a variable to be input from the serial port or Ethernet. An optional prompt message can be displayed. The variable value must be followed by a carriage return. The entered value is assigned to the specified variable name.
	The IN command holds up execution of following commands in the program thread until a carriage return or semicolon is entered. I...
	"m" is the prompt message. May be letters, numbers, or symbols up to maximum line length and must be placed in quotations.
	n is the name of variable to store the new value in.
	{P1} specifies the port, if omitted, the default port is assumed.
	{So} specifies string data where o is the number of characters from 1 to 6

	@IN (Input)
	[I/O]
	@IN returns the status of the digital input number or variable given in square brackets. Note that the @IN command is a function...
	When using this command to access I/O on a slave controller in distributed control mode, use it with the handle for outbound mas...
	n is an integer corresponding to a specific output on the controller to be cleared (set to 0). The first output on the controller is denoted as output 1. A LEGEND-MC controller has 4 digital outputs plus applicable I/ O connected by Modbus.
	n = (SlaveAddress*1000) + (HandleNum*1000) + ((Module-1)*4) + (Bitnum-1)
	Slave Address is used when ModBus device has slave devices connected to it and specified as Addresses 0 to 255. Note that the use of slave devices for modbus are very rare and this number will usually be 0.
	HandleNum is the handle specifier from A to P (1 - 16).
	Module is the position of the module in the rack from 1 to 16.
	BitNum is the I/O point in the module from 1 to 4.

	@INT (Integer)
	[Function]
	@INT returns only the whole number part of a number or variable given in square brackets. Note that the @INT command is a functi...
	n is a number

	IP (Increment Position)
	[Motion]
	The IP command allows for an update in the commanded position while the motor is moving. This command does not require a BG. The command has three effects depending on the motion being executed. The units of this command are quadrature counts.
	An IP n command is equivalent to a PR n and BG command. The motor will move to the specified position at the requested slew speed and acceleration.
	An IP n command will cause the motor to move to a new position target, which is the old target plus n. n must be in the same direction as the existing motion (final target cannot be closer).
	An IP n command will cause the motor to instantly try to servo to a position n from the present instantaneous position. The SP a...

	IT (Independent Time Constant)
	[Motion]
	The IT command filters the acceleration and deceleration functions in independent moves of JG, PR, PA type to produce a smooth v...
	The use of IT will not effect the trippoints AR and AD. The trippoints AR and AD monitor the profile prior to the IT filter and therefore can be satisfied before the actual distance has been reached if IT is NOT 1.
	An IT value less then 1 will make the move longer. This can be compensated for by increasing the acceleration and deceleration paraemters
	n is a positive number with a resolution of 1/256
	_ITn will return the value of the independent time constant where n is an axis letter.

	JG (Jog)
	[Motion]
	The JG command sets a speed in jog mode. The parameters following the JG set the slew speed and direction of motion. Use of the ...
	_JGn will return the absolute value of the jog speed in counts per second where n is an axis letter.

	JP (Jump to Program Location)
	[Program Flow]
	The JP command causes a jump to a program location on a specified condition (optional). The program location may be any label. T...
	Multiple conditions can be used in a single jump statement. Conditional statements are combined in pairs using operands “&” and ...
	location is a program label
	condition is a conditional statement using a logical operator

	JS (Jump to Subroutine)
	[Program Flow]
	The JS command will change the sequential order of execution of commands in a program. If the jump is executed, the program will...
	Multiple conditions can be used in a single jump subroutine statement. The conditional statements are combined in pairs using th...
	destination is a line number or label
	condition is a conditional statement using a logical operator
	The logical operators are:

	KD (Derivative Constant)
	[Tuning]
	KD designates the derivative constant in the controller filter. The filter transfer function is
	D(z) = 4 * KP + 4 * KD(z-1)/z + KIz/2 (z-1)
	For further details on the filter see the section Theory of Operation.
	_KDn contains the value of the derivative constant where n is an axis letter.

	KI (Integrator)
	[Tuning]
	The KI command sets the integral gain of the control loop. It fits in the control equation as follows:
	D(z) = 4 * KP + 4 * KD(z-1)/z + KI z/2(z-1)
	The integrator term will reduce the position error at rest to zero.
	_KIn contains the value of the integrator where n is an axis letter.

	KP (Proportional Constant)
	[Tuning]
	KP designates the proportional constant in the controller filter. The filter transfer function is
	D(z) = 4 * KP + 4 * KD(z-1)/z + KI z/2(z-1)
	For further details see the section Theory of Operation.
	_KPn contains the value of the proportional constant where n is an axis letter.

	LA (List Arrays)
	[General]
	The LA command returns a list of all arrays in memory. The listing will be in alphabetical order. The size of each array will be included next to each array name in square brackets.

	LC (Lock Controller)
	[Configuration]
	The (LC) Lock Controller command is used to prohibit the execution of certain commands from the serial port by setting a securit...
	where p is the password as previously established with the "PW" command.
	"l" is the Lock setting, 0=Unlock, 1=Lock commands (see table), 2=Lock commands and prohibit setting any commands from the serial port.
	_LC will return the lock state of the controller, 0 = not locked, 1 = specific commands locked, 2 = All commands locked including from serial port and ethernet port except the LC command.

	LE (Linear Interpolation End)
	[Motion]
	Signifies the end of a linear interpolation sequence. It follow the last LI specification in a linear sequence. The LE command signifies the controller issues commands to decelerate the motor to a stop.
	n=? Returns the total vector move length in encoder counts for the coordinate system.
	_LE contains the total vector move length in encoder counts.

	_LF* (Forward Limit)
	[Status]
	The _LF operand contains the state of the forward limit switch. A value of zero always indicates that the limit is active, no matter what configuration the CN command is set to.

	LI (Linear Interpolation)
	[Motion]
	The LI command specifies the incremental distance of travel for Linear Interpolation (LM) mode. LI parameter are relative distan...
	LM? returns the available spaces for LI segments that can be sent to the buffer. 511 returned means the buffer is empty and 511 ...
	Linear Interpolation is useful for making contoured or continuous move profiles.
	NOTE: Linear mode can NOT be used on multiple axes controlled via ethernet.

	LL (List Labels)
	[General]
	The LL command returns a listing of all of the program labels in memory. The listing will be in alphabetical order.

	LM (Linear Mode)
	[Setting]
	The LM command specifies the linear interpolation mode and specifies the axes for linear interpolation. LI commands are used to ...
	Only one axis can be used in interpolation mode. Axes connected in a distributed control system cannot be coordinated over ether...
	_LMx contains the number of spaces available in the sequence buffer for the coordinate system.

	LO (Lockout)
	[Configuration]
	The LO command is used to lock-out a particular handle or serial port with the master controller on a distributed control system. This function ignores all data received to the master on the specified communication channel.
	h is the handle, A thru P, or the letter S for the serial port. This identifies the communication channel to be locked out.
	n = 1 or no argument to enable the lockout
	_LOh contains the state of the lockout for handle A - P or S.
	The list continues, each handle is offset by $600.

	_LR* (Reverse Limit)
	[Status]
	*The _LR operand contains the state of the reverse limit switch. A value of zero always indicates that the limit is active no matter what the configuration of the CN command is.

	LS (List Program)
	[General]
	The LS command sends a listing of the program memory out of the port that issued the command. The listing will start with the li...
	n,m are valid numbers from 0 to 499, or labels. n is the first line to be listed, m is the last.
	_LS returns the line number the program will return to after the current subroutine ends. If a program is not running, the value is negative and reports the number of program lines in the controller.

	LT (Latch Target)
	[Motion]
	The LT command is used for stopping an axis a defined distance after a registration mark (latch) input. The distance specified b...
	1 Motors stopped at commanded independent position (Latch input not received)
	40 Stopped at Latch Target.
	41 Latch Target overrun due to limit switch or stop command.
	42 Latch Target overrun due to insufficient distance.

	LV (List Variables)
	[General]
	The LV command returns a listing of all of the program labels in memory. The listing will be in alphabetical order.

	LZ (Leading Zeros)
	[Setting]
	The LZ command is used for formatting the values returned from interrogation commands or interrogation of variables and arrays. ...
	1 to remove leading zeros
	0 to disable the leading zero removal

	MB (Modbus)
	[I/O]
	The MB command is used to communicate with I/O devices using the first two levels of the Modbus protocol.
	The format of the command varies depending on each function code. The function code, -1, designates that the first level of Modb...
	This program was designed to read four analog inputs from 2 analog input cards (the first two cards) in the rack of a Wago I/O s...

	MC (Motion Complete)
	[Trippoint]
	The MC command is a trippoint used to control the timing of events. This command will hold up execution of the following command...

	MF (Motion Forward)
	[Trippoint]
	The MF command is a trippoint used to control the timing of events. This command will hold up the execution of the following com...

	MG (Message)
	[General]
	The MG command sends data out the specified port. This can be used to alert an operator, send instructions or return a variable value.
	"m" is a text message including letters, numbers, symbols or <ctrl>G. Make sure that maximum line length is not exceeded.
	{^n} is an ASCII character specified by the value n in decimal.
	V is a variable name or array element where the following specifiers can be used for formatting:
	{Fm.n} Display variable in decimal format with m digits to left of decimal, and n to the right.
	{$m,n} Display variable in hexadecimal format with m digits to left of decimal, and n to the right.
	{Sn} Display variable as a string of length n where n is 1 thru 6
	{N} Suppress carriage return line feed.
	{Ex}For Ethernet and ‘x’ specifies the Ethernet handle (A,B,C,D,E, ... P). NOTE: if {Ex} is used, it must be the first option after the MG command.
	{P1} forces a message to the serial port.
	Case 1: Message command displays ASCII strings
	MG "Good Morning" Displays the string
	Case 2: Message command displays variables or arrays
	MG "The Answer is", TOTAL {F4.2} Displays the string with the content of variable TOTAL in local format of 4 digits before and 2 digits after the decimal point.
	Case 3: Message command sends any ASCII characters to the port.
	MG {^13}, {^30}, {^37}, {N} Sends carriage return, characters 0 and 7 followed by no carriage return line feed command to the port.

	MM (Master’s Modulus)
	[Setting]
	The MM command is part of the ECAM mode. The MM command replaces the master modulus setting of the EM command. This allows camming with the auxiliary encoder as the master.
	where x is the value of the master modulus in encoder counts.

	MO (Motor Off)
	[Setting]
	The MO command shuts off the PID control algorithm and the servo enable signal. The controller will continue to monitor the moto...
	The servo cannot be turned off (MO) while it is commanded to move. Issuing the MO command in this mode will cause a command error. Use the ST, AM or AB commands before MO.
	The action of performing MO then SH will clear any non critical amplifier alarms.
	_MOn will return the state of the motor where n is an axis letter, 0 = servo loop on and 1 = servo loop off.

	MR (Motion Reverse)
	[Trippoint]
	The MR command is a trippoint used to control the timing of events. This command will hold up the execution of the following com...

	MT (Motor Type)
	[Configuration]
	The MT command selects the type of the motor and the polarity of the drive signal. Motor types include standard servo motors which require a voltage in the range of +/- 10 Volts. The polarity reversal inverts the analog signals.
	1 Servo motor (rotary motor moves counterclockwise when viewing shaft end of motor)
	-1 Servo motor reversed polarity
	_MTn contains the value of the motor type where n is an axis letter.

	MW (Modbus Wait)
	[Configuration]
	The MW command sets the controller to wait for the ACK signal from a remote I/O device before going to the next command. With th...
	n is 0 to disable the Modbus Wait function.
	n is 1 to enable the Modbus Wait function.

	NA (Number of Axes)
	[Configuration]
	This command is obselete. Use the HC command instead.
	NA defines the total number of axes used in a distributed network control system. This command is used on the master controller. For example; using 3 LEGEND-MC controllers. The command NA3 would be given to the master controller.
	n is an integer. this number represents the number of axes in a distributed control system.

	NB (Notch Bandwidth)
	[Tuning]
	The NB command sets real part of the notch poles
	x, y z, w, or a, b, c, d, e, f, g, h are unsigned integers

	NF (Notch Filter)
	[Tuning]
	The NF command sets the frequency of the notch filter, which is placed in series with the PID compensation.
	_NFn contains the value of notch filter for the specified axis where n is an axis letter.

	NO (No Operation)
	[General]
	The NO command performs no action in a sequence, but can be used as a comment in a program. After the NO, characters can be given to form a program comment up to the maximum line length. This helps to document a program.
	An apostrophe (‘) may also be used instead of the NO to document a program. Comments designated with either the NO or ‘ remain in the program as it is downloaded to the controller, thus occupying some memory space.
	m is any group of letters, numbers, symbols or <cntrl>G

	NZ (Notch Zero)
	[Tuning]
	The NZ command sets the real part of the notch zero.
	_NZn contains the value of the Notch filter zero for the specified axis where n is an axis letter.

	OB (Output Bit)
	[I/O]
	The OB n, logical expression command defines output bit n = 1 through 4 as either 0 or 1 depending on the result from the logical expression. Any non-zero value of the expression results in a one on the output.
	When using this command to access I/O on a slave controller in distributed control mode, use it with the handle for outbound mas...
	This command also works for Modbus outputs.
	ARGUMENTS: OB n, expression where
	n is 1 to 4 for the local controller. However, remote local outputs can be used (i.e. Offset 100 per handle for SMC outputs; Offset 1000 per handle for Modbus outputs)
	expression is any valid logical expression, variable or array element.
	n = (SlaveAddress*1000) + (HandleNum*1000) + ((Module-1)*4) + (Bitnum-1)
	Slave Address is used when the ModBus device has slave devices connected to it and specified as Addresses 0 to 255. The use of slave devices for modbus are very rare and this number will usually be 0.
	HandleNum is the handle specifier from A to P (1 - 16).
	Module is the position of the module in the rack from 1 to 16.
	BitNum is the I/O point in the module from 1 to 4.

	OC (Output Compare)
	[I/O]
	The OC command allows the generation of output pulses based on the main encoder positions. The output is a low-going pulse with a duration of approximately 600 nanoseconds and is available at the output compare signal.
	The auxiliary encoder cannot be used while using this function.
	The output on pin 7 of the 5 CN connector is a TTL signal and requires JP3 to be installed. The output is accurate to +/- 40 nanoseconds.
	m = Absolute position for first pulse. Integer between -2× 109 and 2 × 109
	n = Incremental distance between pulses. Integer between -65535 and 65535.
	OCx = 0 will disable the Output Compare function.
	The sign of the parameter, n, will designate the expected direction of motion for the output compare function. When moving in th...
	_OCx contains the state of the OC function
	_OCx = 0: OC function has been enabled but not generated any pulses.
	_OCx = 1: OC function not enabled or has generated the first output pulse.

	OE (Off On Error)
	[Setting]
	The OE command causes the controller to shut off the motor command if the position error exceeds the limit specified by the ER command or an abort occurs from either the abort input or an AB command.
	_OEn contains the status of the off-on-error function where n is an axis letter.

	OF (Offset)
	[Tuning]
	The OF command sets a bias voltage in the motor command output or returns a previously set value. This can be used to counteract gravity or an offset in an amplifier. If the PID values are zero, then the output voltage will be the OF value.
	This command is useful when compensating for gravity in a vertical load application.
	ARGUMENTS: OF x, y, z, w or OFX=x or OF a, b, c, d, e, f, g, h where
	_OFn contains the offset in volts where n is an axis letter.

	OP (Output Port)
	[I/O]
	The OP command sets 4 bits of data on the output port of the controller simultaneously.
	The n parameter is used to specify the number of bits affected starting with the LSB. The other bits are masked. For example, if n=2, only outputs 1 and 2 will be changed by OP m. If the n parameter is not specified, all bits will be changed.
	To set or read outputs on a slave controller use the SA command.
	m is an integer
	_OP contains the status of the outputs.

	@OUT (Output)
	[Function]
	@OUT returns the status of the digital output number or variable given in square brackets. Note that the @OUT command is a funct...
	n is an integer corresponding to a specific output on the controller. The first output on the controller is denoted as output 1. A LEGEND-MC controller has 4 digital outputs plus applicable I/O connected by Modbus.
	n = (SlaveAddress*1000) + (HandleNum*1000) + ((Module-1)*4) + (Bitnum-1)
	Slave Address is used when the ModBus device has slave devices connected to it and specified as Addresses 0 to 255. Please note that the use of slave devices for modbus are very rare and this number will usually be 0.
	HandleNum is the handle specifier from A to P (1 - 16).
	Module is the position of the module in the rack from 1 to 16.
	BitNum is the I/O point in the module from 1 to 4.

	PA (Position Absolute)
	[Motion]
	The PA command will set the absolute destination of the next move. The position is referenced to absolute zero. If a ? is used, ...
	_PAn contains current command position if not moving, start position if given during motion where n is an axis letter.

	PF (Position Format)
	[Setting]
	The PF command allows the user to format the position numbers such as those returned by TP. The number of digits of integers and...
	If a number exceeds the format, the number will be displayed as the maximum possible positive or negative number (i.e. 999.99, -999, $8000 or $7FF).
	The PF command can be used to format values returned from the following commands:
	m is an integer. The negative sign for m specifies hexadecimal representation.
	n is an integer
	_PF contains the value of position format parameter.

	PN (Legend Parameter)
	[Configuration]
	The PN command sets or returns data residing in the Legend amplifier. The PN command causes the controller to communicate to the...
	p is the parameter number, typically entered as a hex value, this is amplifier standard.
	v is the value of the parameter, in the units required by the parameter.
	_PNp will return the value of the parameter where p is the parameter number.

	PR (Position Relative)
	[Motion]
	The PR command sets the incremental distance and direction of the next move. The move is referenced with respect to the current position. Units are in quadrature counts.
	_PRn will return the current incremental distance where n is an axis letter.

	PW (Password)
	[Configuration]
	The (PW) Password command sets or changes the controller's security password. The command requires two parameters; p,p. Both par...
	where p,p are identical passwords up to 8 characters in length.
	All characters can be alphabetic or numeric.

	QD (Download Array)
	[General]
	The QD command transfers array data from the host computer to the LEGEND-MC. QD array[],start,end requires that the array name ...
	“array[]” is a valid array name
	“start” is the first element of the array (default=0)
	“end” is the last element of the array (default=last element)

	QL (Query Latch - Auxiliary Encoder)
	[General]
	The QL command will return the last position captured by the latch on the auxiliary axis. The latch must first be armed by the AL command.
	ARGUMENTS: QLn where
	n = XYZW or ABCDEFGH for the auxiliary encoder latch.
	_QLn contains the latched position where n is an axis letter.

	QR (Data Record)
	[General]
	The QR command causes the controller to return a record of information regarding controller status. This status information incl...
	x is X,Y,Z,W,A,B,C,D,E,F,G,H or I or any combination to specify the axis, axes, or I/O status
	I represents the status of the I/O
	The Communication chapter of the users manual provides the definition of the data record information.

	QU (Upload Array)
	[General]
	The QU command transfers array data from the LEGEND-MC to a host computer. QU requires that the array name be specified along wi...
	“array[]” is a valid array name
	“start” is the first element of the array (default=0)
	“end” is the last element of the array (default=last element)
	“delim” specifies the character used to delimit the array elements. If delim is 1, then the array elements will be separated by a comma. Otherwise, the elements will be separated by a carriage return.

	QW (Slave Record Update Rate)
	[Configuration]
	The QW command is given to the master controller of a distributed system. The value establishes the update rate for data records...
	h is the handle being used to send commands to the slave controller.
	n = an even integer between 4 and 16000. this sets the period at which the slave controller updates the master controller. the v...

	QZ (Return Data Record Information)
	[General]
	The QZ command is an interrogation command that returns information regarding the Data Record. The controller’s response to this command will be the return of 4 integers separated by commas. The four fields represent the following:
	First field returns the number of axes.
	Second field returns the number of bytes to be transferred for general status
	Third field returns the number bytes to be transferred for coordinated move status
	Fourth field returns the number of bytes to be transferred for axis specific information

	RA (Record Array)
	[General]
	The RA command selects up to four arrays for automatic data capture. The selected arrays must have been dimensioned by the DM command. The data to be captured is specified by the RD command and time interval by the RC command.
	n,m,o,p are dimensioned arrays as defined by DM command. The [] contain nothing.

	RC (Record)
	[General]
	The RC command begins recording for the Automatic Record Array Mode (RA). RC 0 stops recording.
	n is an integer 1 thru 8 and specifies 2n samples between records. RC 0 stops recording.
	m is optional and specifies the number of records to be recorded. If m is not specified, the DM number will be used. A negative ...
	_RC contains status of recording '1' if recording, '0' if not recording.

	RD (Record Data)
	[General]
	The RD command specifies the data type to be captured for the Record Array (RA) mode. The data types include:
	the arguments are the data type to be captured using the record array feature. The order is important. Each of the four data types corresponds with the array specified in the RA command.
	_RD contains the address for the next array element for recording.

	RE (Return from Error)
	[Program Flow]
	The RE command is used to end a position error handling subroutine or limit switch handling subroutine. The error handling subro...
	0 clears the interrupted trippoint
	1 restores state of trippoint

	RI (Return from Interrupt)
	[Program Flow]
	The RI command is used to end the interrupt subroutine beginning with the label #ININT. An RI at the end of this routine causes ...
	n = 0 or 1
	0 clears interrupt trippoint
	1 restores trippoint

	RL (Report Latch)
	[General]
	The RL command will return the last position captured by the latch. The latch must first be armed by the AL command. The armed state of the latch can be configured using the CN command.
	_RLn contains the main encoder latched position where n is an axis letter.

	@RND (Round)
	[Function]
	@RND rounds a number or variable given in square brackets. Note that the @RND command is a function, which means that it does not follow the convention of the commands, and does not require the underscore when used as an operand.
	n is a number

	RP (Reference Position)
	[Motion]
	The RP command will return the commanded position of the servo. This is updated every sample period by the profiler. RP-TP=TE. The units are in counts.
	_RPn contains the commanded position where n is an axis letter.

	RS (Reset)
	[General]
	The RS command resets the processor to its power-on condition. The previously saved (burned) state of the controller, along with parameter values, and saved sequences are restored.
	1 restores burned parameters only
	2 clears application programs only

	<control>R<control>S (Master Reset)
	[General]
	The Master Reset command resets the LEGEND-MC to factory default settings and erases the EEPROM.
	A master reset can also be performed by installing a jumper on the LEGEND-MC at the location labelled JP1/MR. The controller mus...

	<control>R<control>V (Firmware Revision)
	[General]
	The Revision command causes the controller to return the firmware revision information.

	SA (Send Command)
	[General]
	SA sends a command from the master to the slave controller of a distributed control system. Any command can be sent to a slave c...
	When using this command to access I/O on a slave controller in distributed control mode, use it with the handle for outbound mas...
	h is the handle being used to send commands to the slave controller.
	arg is a number, controller operand, variable, mathematical function, or string; the range for numeric values is 4 bytes of inte...
	Typical usage would have the first argument as a string such as “KI” and the subsequent arguments as the arguments to the command: Example SAF= “KI”,2 would send the command KI2 to the slave controller on handle F.
	_SAhn gives the value of the response to the command sent with an SA command. The h value represents the handle A thru P and the...
	Recommended Send Method
	Recommended Receive Method

	SB (Set Bit)
	[I/O]
	The SB command sets one of four bits on the output port, slave controller, or Modbus I/O.
	When using this command to access I/O on a slave controller in distributed control mode, use it with the handle for outbound mas...
	n is an integer in the range 1 to 4 decimal or Modbus address. See chart below for setting outputs on slave controllers.
	n = (SlaveAddress*1000) + (HandleNum*1000) + ((Module-1)*4) + (Bitnum-1)
	Slave Address is used when the ModBus device has slave devices connected to it and specified as Addresses 0 to 255. Please note that the use of slave devices for modbus are very rare and this number will usually be 0.
	HandleNum is the handle specifier from A to P (1 - 16).
	Module is the position of the module in the rack from 1 to 16.
	BitNum is the I/O point in the module from 1 to 4.

	SC (Stop Code)
	[Status]
	The SC command allows the user to determine why a motor stops. The controller responds with the stop code as follows:
	_SCn contains the value of the stop code where n is an axis letter.

	SH (Servo Here)
	[General]
	The SH command tells the controller to use the current motor position as the commanded position and to enable servo control here. PID control starts when this command is issued.
	This command can be useful when the position of a motor has been manually adjusted following a motor off (MO) command.
	The SH command is integrated with the RUN output of the LEGEND amplifier. If the RUN output does not come ON within 100 msec, the controller returns to MO status and issues a command error. If this occurs, check the power on L1, L2, and L3.
	The action of performing MO then SH will clear any non critical amplifier alarms.

	@SIN (Sine)
	[Function]
	@SIN returns the sin of a number or variable given in square brackets using units of degrees. Note that the @SIN command is a fu...
	n is a number

	SP (Speed)
	[Motion]
	This command sets the slew speed for independent moves. The parameters input will be rounded down to the nearest factor of 2 and the units of the parameter are in counts per second.
	_SPn contains the current speed setting where n is an axis letter.

	@SQR (Square Root)
	[Function]
	@SQR returns the square root of a number or variable given in square brackets. Note that the @SQR command is a function, which m...
	n is a number

	ST (Stop)
	[Motion]
	The ST command stops commanded motion. The motor will come to a decelerated stop.

	TA (Tell Alarm)
	[Status]
	The TA command checks the alarm output of the amplifier on the side connector. If no alarm is present, the controller returns 15...
	NOTE: The amplifier requires special firmware to transmit the alarm code to the controller. Consult the factory for details. Firmware in the amplifier is not field upgradable.

	TB (Tell Status Byte)
	[Status]
	The TB command returns status information from the controller as a decimal number. Each bit of the status byte denotes the following condition when the bit is set (high):
	_TB contains the status byte.

	TC (Tell Code)
	[Status]
	The TC command returns a number between 1 and 255. This number is a code that reflects why a command was not accepted by the con...
	n=0 returns code only
	n=1 returns code and message
	_TC contains the value of the error code.

	TD (Tell Dual (Auxiliary) Encoder)
	[Status]
	This command returns the current position of the dual (auxiliary) encoder.
	_TDn contains the dual encoder position where n is an axis letter.

	TE (Tell Error)
	[Status]
	This command returns the current position error of the motor. It is up-dated every servo cycle.

	TH (Tell Handle)
	[Status]
	This command returns a formatted text display including the controllers MAC address, IP Address, and the IP address of the device connected to each of the handles. Also included are the port type and master / slave configuration.
	This command is most useful from an external device, such as a terminal window or other program that can interpret the information.

	TI (Tell Inputs)
	[I/O]
	This command returns the state of all 8 of the general digital inputs. Response is a decimal number which when converted to binary represents the status of all 8 digital inputs.
	When using this command to access I/O on a slave controller in distributed control mode, use it with the handle for outbound mas...
	_TI contains the status byte of the input block. This can be masked to return only specified bit information.

	TIME (Time Keyword)
	[General]
	The TIME operand contains the value of the internal free running, real time clock. The returned value represents the number of s...
	The clock is reset to 0 with a standard reset or a master reset.
	The keyword, TIME, does not require an underscore (_) as with the other operands.

	TL (Torque Limit)
	[Setting]
	The TL command sets the limit on the motor command output. For example, TL of 5 limits the motor command output to 5 volts. Maximum output of the motor command is 9.998 volts.
	_TLn contains the value of the torque limit where n is an axis letter.

	TM (Time Base)
	[Configuration]
	The TM command sets the sampling period of the control loop. Changing the sampling period will uncalibrate the speed and acceler...
	n is an integer in microseconds with a resolution of 125 microseconds.
	_TM contains the value of the sample time.

	TP (Tell Position)
	[Status]
	This command returns the current position of the motor in quadrature counts.This value is up-dated every servo cycle.
	_TPn contains the current position value where n is an axis letter.

	TR (Trace Mode)
	[Debug]
	The TR command causes each instruction in a program to be sent out the communications port prior to execution. TR1 enables this ...
	n=0 or 1
	0 disables function
	1 enables function

	TS (Tell Switches)
	[Status]
	TS returns the state of the Home switch, Forward and Reverse Limit switch, error conditions, motion condition and motor state. T...
	Bit 7
	Axis in motion if high
	Bit 6
	Error limit exceeded if high
	Bit 5
	Motor off if high
	Bit 4
	Amplifier OK if high
	Bit 3
	Forward Limit inactive if high
	Bit 2
	Reverse Limit inactive if high
	Bit 1
	State of home switch
	Bit 0
	Latch not armed if high
	_TSX contains the current status of the switches.

	TT (Tell Torque)
	[Status]
	The TT command reports the value of the analog servo command output signal, which is a number between -9.998 and 9.998 volts. This value is up-dated every servo cycle.
	_TTn contains the value of the torque where n is an axis letter.

	TV (Tell Velocity)
	[Status]
	The TV command returns the actual velocity in units of quadrature count/s. The value returned includes the sign. This value is averaged over 256 servo cycles.
	_TVn contains the value for the velocity where n is an axis letter.

	TW (Time Wait)
	[Setting]
	The TW n command sets the timeout in msec to declare an error if the MC command is active and the motor is not at or beyond the ...
	n specifies timeout in msec, -1 disables the timeout
	_TW contains the timeout in msec for the MC command .

	UL (Upload)
	[General]
	The UL command transfers data from the LEGEND-MC to a host computer. Programs are sent without line numbers. The Uploaded program will be followed by a <control>Z or a \ as an end of Text marker.
	When used as an operand, _UL gives the number of available variables. The total number of variables is 126.

	VA (Vector Acceleration)
	[Motion]
	This command sets the acceleration rate of the vector in a coordinated motion sequence.
	n is an unsigned integer. The parameter input will be rounded down to the nearest factor of 1024. The units of the parameter is counts per second squared.
	_VA contains the value of the vector acceleration.

	VD (Vector Deceleration)
	[Motion]
	This command sets the deceleration rate of the vector in a coordinated motion sequence.
	n is an unsigned integer. The parameter input will be rounded down to the nearest factor of 1024. The units of the parameter is counts per second squared.
	_VD contains the value of the vector deceleration.

	VE (Vector End)
	[Motion]
	VE is required to specify the end segment of a coordinated move sequence. VE follows the final VP or CR command in a sequence. V...
	_VE contains the length of the vector in counts.

	VF (Variable Format)
	[General]
	The VF command allows the variables and arrays to be formatted for number of digits before and after the decimal point. When dis...
	If a number exceeds the format, the number will be displayed as the maximum possible positive or negative number (i.e. 999.99, -999, $8000 or $7FF).
	m and n are unsigned numbers. A negative m specifies hexadecimal format.
	_VF contains the value of the format for variables and arrays.

	VR (Vector Speed Ratio)
	[Motion]
	The VR sets a ratio to be used as a multiplier of the current vector speed. The vector speed can be set by the command VS or the...
	n is an integer with a resolution of .0001.
	_VR contains the vector speed ratio.

	VS (Vector Speed)
	[Motion]
	The VS command specifies the speed of the vector in a coordinated motion sequence in either the LM or VM modes. VS may be changed during motion.
	Vector Speed can be calculated by taking the square root of the sum of the squared values of speed for each axis specified for vector or linear interpolated motion.
	n is an unsigned even number. The units are counts per second.
	_VS contains the vector speed.

	VT (Vector Time Constant)
	[Motion]
	The VT command filters the acceleration and deceleration functions in vector moves of VM, LM type to produce a smooth velocity p...
	n is an unsigned number with a resolution of 1/256.
	_VT contains the vector time constant.

	WC (Wait for Contour)
	[Program Flow]
	The WC command acts as a flag in the Contour Mode. After this command is executed, the controller does not receive any new data ...

	WT (Wait)
	[Trippoint]
	The WT command is a trippoint used to time events. After this command is executed, the controller will wait for the number of sa...
	n is an integer
	Assume that 10 seconds after a move is over a relay must be closed.

	XQ (Execute Program)
	[General]
	The XQ command begins execution of a program residing in the program memory of the controller. Execution will start at the label...
	A is a program label of up to seven characters
	m is a line number
	n is the thread number 0 through 3
	_XQn contains the current line number of execution for thread n, and -1 if thread n is not running.

	ZS (Zero Subroutine Stack)
	[Program Flow]
	The ZS command is only valid from within an application program and is used to avoid returning from an interrupt (either input o...
	0 returns stack to original condition
	1 eliminates one return on stack
	_ZSn contains the stack level for the specified thread where n = 0 or 1. The response, an integer between zero and seven, indicates zero for beginning condition and 15 for the deepest value.

	5 Programming Basics
	Introduction
	The LEGEND-MC provides over 100 commands for specifying motion and machine parameters. Commands are included to initiate action, interrogate status and configure the digital filter.
	The LEGEND-MC instruction set is BASIC-like and easy to use. Instructions usually consist of two uppercase letters that normally correspond phonetically with the appropriate function. For example, the instruction BG begins motion, and ST stops motion.
	Commands can be sent "live" for immediate execution by the LEGEND-MC, or an entire group of commands (a program) can be download...
	This section describes the LEGEND-MC instruction set and syntax. A complete listing of all LEGEND- MC instructions is included in the command reference section.

	Program Maximums
	Command Syntax
	LEGEND-MC instructions are represented by two ASCII upper case characters followed by applicable arguments. A space may be inser...
	For example, the command
	PR is the two character instruction for Position Relative. 4000 is the argument which represents the required position value in counts. The <enter> terminates the instruction. The space between PR and 4000 is optional.
	For specifying data for the X,Y,Z and W axes, commas are used to separate the axes and preserve axis order as X,Y,Z and W. If no...
	To view the current values for each command, specify the command followed by a ? for each axis requested. The LEGEND-MC provides an alternative method for specifying data.
	Here data is specified individually using a single axis specified such as X,Y,Z or W (or A,B,C,D,E,F,G or H for the LEGEND-MC). An equal sign is used to assign data to that axis. For example: PRZ=1000 Sets the Z axis data as 1000
	All axes data may be specified at once using the * symbol. This sets all axes to have the same data. For example:
	Example XYZW Syntax for Specifying Data
	Instead of data, some commands request action to occur on an axis or group of axes. For example, ST XY stops motion on both the ...

	Example XYZW syntax for Requesting Action

	Controller Response to Commands
	For each valid command entered, the LEGEND-MC returns a colon (:). If the LEGEND-MC decodes a command as invalid, it returns a question mark (?).
	For example, if the command bg is sent in lower case, the LEGEND-MC will return a ?.
	VERY IMPORTANT!
	The command Tell Code, TC1, will return the reason for the “?” received for the last invalid command.
	There are several coded reasons for receiving a ?. Example codes include unrecognized command (such as typographical entry or lo...
	For interrogation instructions such as Tell Position (TP) or Tell Status (TS), the LEGEND-MC returns the requested data on the next line followed by a carriage return and line feed. The data returned is in decimal format.
	The format of the returned data can be set using the Position Format (PF) and Variable Format (VF) command.

	Command Summary
	Each LEGEND-MC command is described fully in the command reference section of this manual. A summary of the commands follows.
	The commands are grouped in this summary by the following functional categories:
	Motion commands are those to specify modes of motion such as Jog Mode or Linear Interpolation, and to specify motion parameters such as speed, acceleration and deceleration, and distance.
	Program flow commands are used in Application Programming to control the program sequencer. They include the jump on condition command and event triggers such as after position and after elapsed time.
	General configuration commands are used to set controller configurations such as setting and clearing outputs, formatting variables, and motor/encoder type.
	The control setting commands include filter settings such as KP, KD, and KI and sample time.
	Error/Limit commands are used to configure software limits and position error limits.
	Motion
	Program Flow
	General Configuration
	Control Filter Settings
	Status
	Error And Limits
	Arithmetic Functions

	6 Programming Motion
	Overview
	The LEGEND-MC provides several modes of motion, including independent positioning and jogging, coordinated motion, electronic cam motion, and electronic gearing. Each one of these modes is discussed in the following sections.
	The LEGEND-MC is a single axis controller and uses X-axis motion only. The example applications described below will help guide you to the appropriate mode of motion.

	Independent Axis Positioning
	In this mode, motion between the specified axes is independent, and each axis follows its own profile. The user specifies the de...
	The Begin (BG) command can be issued for all axes either simultaneously or independently. X or Y axis specifiers are required to select the axes for motion. When no axes are specified, this causes motion to begin on all axes.
	The speed (SP) and the acceleration (AC) can be changed at any time during motion, however, the deceleration (DC) and position (...
	An incremental position movement (IP) may be specified during motion as long as the additional move is in the same direction. He...
	Command Summary - Independent Axis
	The lower case specifiers (x,y) represent position values for each axis. The Legend-MC also allows use of single axis specifiers such as PRY=2000.
	The following illustration - Velocity Profiles of XY shows the velocity profiles for the X and Y axis.
	Notes on Velocity Profiles of XY illustration: The X axis has a ‘trapezoidal’ velocity profile, while the Y axis has a ‘triangul...

	Independent Jogging
	The jog mode of motion is very flexible because speed, direction and acceleration can be changed during motion. The user specifi...
	An instant change to the motor position can be made with the use of the IP command. Upon receiving this command, the controller ...
	Note that the controller operates as a closed-loop position controller while in the jog mode. The LEGEND-MC converts the velocit...
	Command Summary - Jogging
	Parameters can be set with individual axis specifiers such as JGY=2000 (set jog speed for Y axis to 2000) or AC 400000, 400000 (set acceleration for X and Y axes to 400000).

	Linear Interpolation Mode
	The LEGEND-MC provides a linear interpolation mode for 1 axis. In linear interpolation mode, motion is coordinated to maintain t...
	The LM command selects the Linear Interpolation mode and axes for interpolation. For example, LM X selects the X axis for linear interpolation.
	When using the linear interpolation mode, the LM command only needs to be specified once unless the axes for linear interpolation change.
	Specifying Linear Segments
	The command LI x specifies the incremental move distance for each axis. This means motion is prescribed with respect to the curr...
	The clear sequence (CS) command can be used to remove LI segments stored in the buffer prior to the start of the motion. To stop...
	The Linear End (LE) command must be used to specify the end of a linear move sequence. This command tells the controller to dece...
	It is the responsibility of the user to keep enough LI segments in the LEGEND-MC sequence buffer to ensure continuous motion. If...
	The instruction _CS returns the number of the segment being processed. As the segments are processed, _CS increases, starting at zero. This function allows the host computer to determine which segment is being completed.
	Additional Commands
	The commands VS n, VA n, and VD n are used to specify the vector speed, acceleration, and deceleration. The LEGEND-MC computes the vector speed based on the axes specified in the LM mode. For example,
	VT is used to set the S-curve smoothing constant for coordinated moves. The command AV n is the ‘After Vector’ trippoint, which halts program execution until the vector distance of n has been reached.

	Specifying Vector Speed for Each Segment
	The instruction VS has an immediate effect and, therefore, must be given at the required time. In some applications, such as CNC, it is necessary to attach various speeds to different motion segments. This can be done with two functions: < n and > m
	For example: LI x < n >m
	The first command, < n, is equivalent to commanding VSn at the start of the given segment and will cause an acceleration toward the new commanded speed, subject to the other constraints.
	The second function, > m, requires the vector speed to reach the value m at the end of the segment. Note that the function > m m...
	Note, however, that the controller works with one > m command at a time. As a consequence, one function may be masked by another...
	As an example, consider the following program.

	Changing Feedrate:
	The command VR n allows the feedrate, VS, to be scaled between 0 and 10 with a resolution of .0001. This command takes effect im...

	Command Summary - Linear Interpolation
	To illustrate the ability to interrogate the motion status, consider the first motion segment of our example, #LMOVE, where the ...

	Vector Mode: Linear Interpolation Motion
	Specifying Vector Segments
	The motion segment is described by the command; VP for linear segments. Once a set of linear segments have been specified, the s...
	The command, VP x specifies the coordinates of the end points of the vector movement with respect to the starting point.
	Up to 511 VP segments may be specified in a single sequence and must be ended with the command VE. The motion can be initiated with a Begin Sequence (BGS) command. Once motion starts, additional segments may be added.
	The Clear Sequence (CS) command can be used to remove previous VP commands which were stored in the buffer prior to the start of...
	The Vector End (VE) command must be used to specify the end of the coordinated motion. This command tells the controller to dece...
	The user must keep enough motion segments in the LEGEND-MC sequence buffer to ensure continuous motion. If the controller receiv...
	The operand _CS can be used to determine the value of the segment counter.

	Additional Commands
	The commands VS n, VA n and VD n are used for specifying the vector speed, acceleration, and deceleration. VT is the motion smoothing constant used for coordinated motion.
	Specifying Vector Speed for Each Segment:
	The vector speed may be specified by the immediate command VS. It can also be attached to a motion segment with the instructions
	VP x < n >m
	The first parameter, <n, is equivalent to commanding VSn at the start of the given segment and will cause an acceleration toward the new commanded speeds, subjects to the other constraints.
	The second parameter, > m, requires the vector speed to reach the value m at the end of the segment. Note that the function > m ...
	Note, however, that the controller works with one > m command at a time. As a consequence, one function may be masked by another...

	Changing Feedrate:
	The command VR n allows the feedrate, VS, to be scaled from 0 and 10 times with a resolution of .0001. This command takes effect...

	Trippoints:
	The AV n command is the After Vector trippoint, which waits for the vector relative distance of n to occur before executing the next command in a program.

	Command Summary - Coordinated Motion Sequence
	Operand Summary - Coordinated Motion Sequence
	When AV is used as an operand, _AV returns the distance traveled along the sequence.
	The operands _VPX and _VPY can be used to return the coordinates of the last point specified along the path.

	Electronic Gearing
	With the LEGEND-MC, the master is always the auxiliary encoder. The master may rotate in both directions and the geared axis will follow at the specified gear ratio.
	The GA command is unnecessary for the LEGEND-MC, as the auxiliary encoder is automatically used. GR x,y specifies the gear ratio...
	GR causes the specified axes to be geared to the actual position of the master.
	Electronic gearing allows the geared motor to perform a second independent or coordinated move in addition to the gearing. For e...
	Command Summary - Electronic Gearing

	Electronic Cam
	The electronic cam is a motion control mode which enables the periodic synchronization of the servo motor with an external device. The LEGEND-MC uses the auxiliary encoder as the master axis.
	The electronic cam is a more detailed type of electronic gearing which allows a table-based relationship between the axes. To il...
	Step 1. Selecting the master axis
	The first step in the electronic cam mode is to select the master axis. This is done with the instruction
	EAD is the auxiliary encoder for the x-axis
	For the given example, since the master is x, we specify EADX
	Step 2. Specify the master cycle and the change in the slave axis.
	In the electronic cam mode, the position of the master is always expressed within one cycle. In this example, the position of x ...
	where EMx specifies the cycle of the slave over one cycle and MMx specifies the cycle of the master.
	The cycle of the master is limited to 8,388,607 whereas the slave change per cycle is limited to 2,147,483,647. If the change is...
	Step 3. Specify the master interval and starting point.
	Next we need to construct the ECAM table. The table is specified at uniform intervals of master positions. Up to 256 intervals are allowed. The size of the master interval and the starting point are specified by the instruction:
	where m is the interval width in counts, and n is the starting point.
	For the given example, we can specify the table by specifying the position at the master points of 0, 2000, 4000 and 6000. We can specify that by
	Step 4. Specify the slave positions.
	Next, we specify the slave positions with the instruction
	where n indicates the order of the point.
	The value, n, starts at zero and may go up to 256. The parameter x indicates the corresponding slave position. For this example, the table may be specified by
	This specifies the ECAM table.
	Step 5. Enable the ECAM
	To enable the ECAM mode, use the command
	where n=1 enables ECAM mode and n=0 disables ECAM mode.
	Step 6. Engage the slave motion
	To engage the slave motion, use the instruction
	where x is the master positions at which the corresponding slaves must be engaged.
	If the value of any parameter is outside the range of one cycle, the cam engages immediately. When the cam is engaged, the slave position is redefined, modulo one cycle.
	Step 7. Disengage the slave motion
	To disengage the cam, use the command
	where x is the master positions at which the corresponding slave axes are disengaged.
	This disengages the slave axis at a specified master position. If the parameter is outside the master cycle, the stopping is instantaneous.
	To illustrate the complete process, consider the cam relationship described by
	the equation:
	Y = 0.5 * X + 100 sin (0.18*X)
	where X is the master, with a cycle of 2000 counts.
	The cam table can be constructed manually, point by point, or automatically by a program. The following program includes the set-up.
	The instruction EAX defines X as the master axis. The cycle of the master is
	2000. Over that cycle, X varies by 1000. This leads to the instruction EM 2000,1000.
	Suppose we want to define a table with 100 segments. This implies increments of 20 counts each. If the master points are to start at zero, the required instruction is EP 20,0.
	The following routine computes the table points. As the phase equals 0.18X and X varies in increments of 20, the phase varies by...
	Now suppose that the slave axis is engaged with a start signal, input 1, but that both the engagement and disengagement points m...
	This is done with the program:

	Contour Mode
	The LEGEND-MC also provides a contouring mode. This mode allows any arbitrary position curve to be prescribed for any motion axe...
	Specifying Contour Segments
	The Contour Mode is specified with the command, CM, i.e.; CMX specifies contouring on the X axis.
	A contour is described by position increments which are described with the command, CD x over a time interval, DT n. The paramet...
	Consider, for example, the illustration labelled The Required Trajectory on the following page. The position X may be described by the points:
	The same trajectory may be represented by the increments
	When the controller receives the command to generate a trajectory along these points, it interpolates linearly between the points. The resulting interpolated points include the position 12 at 1 msec, position 24 at 2 msec, etc.
	The programmed commands to specify the above example are:

	Additional Commands
	The command, WC, is used as a trippoint "When Complete" or “Wait for Contour Data”. This allows the LEGEND-MC to use the next in...
	If no new data record is found and the controller is still in the contour mode, the controller waits for new data. No new motion commands are generated while waiting. If bad data is received, the controller responds with a ?.

	Command Summary - Contour Mode
	General Velocity Profiles
	The Contour Mode is ideal for generating an arbitrary velocity profile. The velocity profile can be specified as a mathematical function or as a collection of points.
	The design includes two parts: Generating an array with data points and running the program.

	Motion Smoothing
	The LEGEND-MC controller allows the smoothing of the velocity profile to reduce mechanical vibrations in the system.
	Trapezoidal velocity profiles have acceleration rates which change abruptly from zero to maximum value. The discontinuous accele...
	Using the IT and VT Commands (S curve profiling):
	When operating with servo motors, motion smoothing can be accomplished with the IT and VT commands. These commands filter the ac...
	The smoothing function is specified by the following commands:
	The command IT is used for smoothing independent moves of the type JG, PR, PA and the command VT is used to smooth vector moves of the type VM and LM.
	The smoothing parameters x,y and n are numbers between 0 and 1 and determine the degree of filtering. The maximum value of 1 imp...
	Note that the smoothing process results in longer motion time.

	Homing
	The Find Edge (FE) and Home (HM) instructions are used to home the motor to a mechanical reference. This reference is connected ...
	The Find Edge (FE) instruction is useful for initializing the motor to a home switch. The home switch is connected to the Home i...
	The Home (HM) command can be used to position the motor on the index pulse after the home switch is detected. This allows for finer positioning on initialization. The command sequence HM and BG causes the following sequence of events to occur.

	High Speed Position Capture (Latch Function)
	Often it is desirable to capture the position precisely for registration applications. The LEGEND-MC provides a position latch f...
	The LEGEND-MC software commands AL and RL are used to arm the latch and report the latched position. The steps to use the latch are as follows:
	To capture the position of the auxiliary encoder, use the command ALSX. The input must be wired to general input 2. _QL holds the captured position.

	7 Application Programming
	Introduction
	The LEGEND-MC programming language is a powerful language that allows users to customize a program to handle their application. ...
	In addition to standard motion commands, the LEGEND-MC provides commands that allow the LEGEND-MC to make its own decisions. The...
	For flexibility, the LEGEND-MC provides 254 user-defined variables, arrays and arithmetic functions, i.e.; length in a cut-to-length operation can be specified as a variable in a program and assigned by an operator.
	The following sections in this chapter discuss all aspects of creating applications programs.

	Program Format
	A LEGEND-MC program consists of several LEGEND-MC instructions combined to solve a machine control application. Action instructi...
	A delimiter must separate each LEGEND-MC instruction in a program. Valid delimiters are the semicolon (;) or carriage return. Th...
	All LEGEND-MC programs must begin with a label and end with an End (EN) statement. Labels start with the pound (#) sign followed...
	The maximum number of labels that may be defined is 126.
	Valid labels
	Invalid labels
	#1Square

	Special Labels
	There are also some special labels, which are used to define input interrupt subroutines, limit switch subroutines, error handli...
	Example Program:
	The above program will execute automatically at power up and move X and Y 10000 and 20000 units. After the motion is complete, t...

	Executing Programs - Multitasking
	Two programs can run independently. The programs (threads) are numbered 0 through 3. 0 is the main thread. The main thread differs from the others in the following points:
	The execution of the various programs is done with the instruction:
	Where n indicates the thread number. To halt the execution of any thread, use the instruction
	where n is the thread number.
	Note that both the XQ and HX functions can be performed by an executing program.
	Multitasking is useful for executing independent operations such as PLC functions that occur independently of motion. The example below produces a waveform on Output 1 independent of a move.
	The program above is executed with the instruction XQ #TASK2,0 which designates TASK2 as the main thread. #TASK1 is executed within TASK2.

	Debugging Programs
	The LEGEND-MC provides trace and error code commands which are used for debugging programs. The trace command may be activated u...
	If there is a program error, the LEGEND-MC will halt program execution at the line number at which an error occurs and display t...
	Program Flow Commands
	The LEGEND-MC provides instructions that control program flow.the LEGEND-MC program sequencer executes instructions in a program...
	Program Flow Command Summary

	Event Triggers & Trippoints
	To function independently from the host computer, the LEGEND-MC can be programmed to make decisions based on the occurrence of a...
	The LEGEND-MC provides several event triggers that cause the program sequencer to halt until the specified event occurs. Normall...

	LEGEND-MC Event Triggers
	Event Trigger Examples:
	Event Trigger - Multiple Move Sequence
	The AM trippoint is used to separate the two PR moves. If AM is not used, the controller returns a ? for the second PR command because a new PR cannot be given until motion is complete.
	In the above example, the AM trippoint is used to separate the two PR moves. If AM is not used, the controller returns a ? for the second PR command because a new PR cannot be given until motion is complete.

	Event Trigger - Set Output after Distance
	Set output bit 1 after a distance of 1000 counts from the start of the move. The accuracy of the trippoint is the speed multiplied by the sample period.
	The above example sets output bit 1 after a distance of 1000 counts from the start of the move. The accuracy of the trippoint is the speed multiplied by the sample period.

	Event Trigger - Repetitive Position Trigger
	To set the output bit every 10000 counts during a move, the AR trippoint is used shown in the next example.

	Event Trigger - Start Motion on Input
	This example waits for input 1 to go low and then starts motion. NOTE: The AI command actually halts execution of the program un...

	Event Trigger - Set Output when at Speed
	Event Trigger - Change Speed along Vector Path
	The following program changes the feed rate or vector speed at the specified distance along the vector. The vector distance is measured from the start of the move or from the last AV command.

	Event Trigger - Multiple Move with Wait
	Define Output Waveform Using AT
	The following program causes Output 1 to be high for 10 msec and low for 40 msec. The cycle repeats every 50 msec.

	Conditional Jumps
	The LEGEND-MC provides Conditional Jump (JP) and Conditional Jump to Subroutine (JS) instructions for branching to a new program...
	The JP and JS instructions have the following format:
	The destination is a program line number or label. The destination is where the program sequencer jumps to if the specified cond...
	Logical operators:
	Operands:
	The jump statement may also be used without a condition.
	Example of conditional jump statements are given below:
	Conditional jumps are useful for testing events in real-time. They allow the LEGEND-MC to make decisions without a host computer...
	Example:
	Move the X motor to absolute position 1000 counts and back to zero ten times. Wait 100 msec between moves.

	Multiple Conditional Statements
	The LEGEND-MC will accept multiple conditions in a single jump statement. The conditional statements are combined in pairs using...
	Example using variables named V1, V2, V3 and V4:
	JP #TEST, (V1<V2) & (V3<V4)
	In this example, this statement will cause the program to jump to the label #TEST if V1 is less than V2 and V3 is less than V4. To illustrate this further, consider this same example with an additional condition:
	JP #TEST, ((V1<V2) & (V3<V4)) | (V5<V6)
	This statement will cause the program to jump to the label #TEST under two conditions; 1. If V1 is less than V2 and V3 is less than V4. OR 2. If V5 is less than V6.

	Examples
	If the condition for the JP command is satisfied, the controller branches to the specified label or line number and continues ex...

	Example:
	Move the A motor to absolute position 1000 counts and back to zero ten times. Wait 100 msec between moves.
	If, Else, and Endif
	The LEGEND-MC provides a structured approach to conditional statements using IF, ELSE and ENDIF commands.
	Using the IF and ENDIF Commands
	An IF conditional statement is formed by the combination of an IF and ENDIF command. The IF command has as it's arguments one or...
	NOTE: An ENDIF command must always be executed for every IF command that has been executed. It is recommended that the user not ...
	NOTE: Do not jump (JP) out of an IF block. If this occurs, the ENDIF instruction will never be executed.

	Using the ELSE Command
	The ELSE command is an optional part of an IF conditional statement and allows for the execution of command only when the argume...

	Nesting IF Conditional Statements
	The LEGEND-MC allows IF conditional statements to be included within other IF conditional statements. This technique is known as...

	Command Format - IF, ELSE and ENDIF

	Example:
	Subroutines
	A subroutine is a group of instructions beginning with a label and ending with an END (EN). Subroutines are called from the main...
	Example:
	An example of a subroutine to draw a square 500 counts per side is given below. The square is drawn at vector position 1000,1000.

	Stack Manipulation
	It is possible to manipulate the subroutine stack by using the ZS command. Every time a JS instruction, interrupt or automatic r...

	Auto Start Routine
	If the #AUTO label is included in a Burned Program (BP command), the controller will start executing the program starting at the location of the #AUTO label when power is applied.

	Automatic Subroutines for Monitoring Conditions
	Often it is desirable to monitor certain conditions continuously without tying up the host or LEGEND-MC program sequences. The L...
	For example, the #POSERR subroutine will automatically be executed when any axis exceeds its position error limit. The commands ...
	Example - Limit Switch:
	This program prints a message upon the occurrence of a limit switch. Note, for the #LIMSWI routine to function, the LEGEND-MC mu...
	Now, when a forward limit switch occurs on the X axis, the #LIMSWI subroutine will be executed.

	Example - Position Error
	If the position error on the X axis exceeds that specified by the ER command, the #POSERR routine will execute.

	Input Interrupt Example:
	Bad Command Example
	The above program prompts the operator to enter a jog speed. If a number is entered out of range (greater than 12 million), the #CMDERR routine will be executed prompting the operator to enter a new number.

	Mathematical and Functional Expressions
	For manipulation of data, the LEGEND-MC provides the use of the following mathematical operators:
	The numeric range for addition, subtraction and multiplication operations is +/-2,147,483,647.9999. The precision for division is 1/65,000.
	Mathematical operations are executed from left to right. Parentheses can be used and nested four deep. Calculations within a parentheses have precedence.
	Examples:
	The LEGEND-MC also provides the following functions:
	Functions may be combined with mathematical expressions. The order of execution is from left to right. The units of the SIN and COS functions are in degrees with resolution of 1/128 degrees. The values can be up to +/-2 billion degrees.

	Example:

	Variables
	Many motion applications include parameters that are variable. For example, a cut-to-length application often requires that the cut length be variable. The motion process is the same, however the length is changing.
	To accommodate these applications, the LEGEND-MC provides for the use of both numeric and string variables. A program can be wri...
	All variables created in the SMC are 48 bit fixed decimal point data. 32 bits are integer (+/- 2147483647) and 16 bits are fraction (1/65535)
	Example:
	Programmable Variables
	The LEGEND-MC allows the user to create up to 254 variables. Each variable is defined by a name which can be up to eight charact...
	Valid Variable Names
	Invalid Variable Names
	It is recommended that variable names not be the same as LEGEND-MC instructions. For example, PR is not a good choice for a variable name.
	The range for numeric variable values is 4 bytes of integer followed by two bytes of fraction (+/- 2,147,483,647.9999).
	String variables can contain up to six characters which must be in quotation. Example: VAR="STRING".
	Numeric values can be assigned to programmable variables using the equal sign. Assigned values can be numbers, internal variables and keywords, and functions. String values can be assigned to variables using quotations.
	Any valid LEGEND-MC function can be used to return a value such as V1=@ABS[V2] or V2=@IN[1]. Arithmetic operations are also permitted.
	Example:
	Variable values may be assigned to controller parameters such as GN or PR. Here, an equal is not used. For example:
	PR V1 Assign V1 to PR command

	Example - Using Variables for Joystick
	The example below reads the voltage of an X-Y joystick and assigns it to variables VX and VY to drive the motors at proportional velocities, where
	10 Volts = 8191 counts --> 3000 rpm = 200000 c/sec
	Speed/Analog input = 200000/8191 = 24.4

	Internal Variables & Keywords
	Internal variables allow motion or status parameters from LEGEND-MC commands to be incorporated into programmable variables and ...
	Most LEGEND-MC commands can be used as internal variables. Status commands such as Tell Position return actual values, whereas a...
	Examples:
	Internal variables can be used in an expression and assigned to a programmable variable, but they cannot be assigned a value. For example: _KDX=2 is invalid.
	The LEGEND-MC also provides a few keywords which give access to internal variables that are not accessible by standard LEGEND-MC commands.

	Examples:
	Example Program:

	Arrays
	For storing and collecting numerical data, the LEGEND-MC provides array space for 8000 elements in up to 14 arrays. Arrays can b...
	Defining Arrays
	An array is defined by a name and number of entries using the DM command. The name can contain up to eight characters, starting with an uppercase alphabetic character.
	The number of entries in the defined array is enclosed in [].
	Up to 14 different arrays may be defined. The arrays are one dimensional.
	All array elements have the same structure as variables, 48 bit decimal point.
	Example:
	Each array element has a numeric range of 4 bytes of integer (231)followed by two bytes of fraction (+/- 2,147,483,647.9999).
	Array space may be de-allocated using the DA command followed by the array name. DA*[0] de- allocates all the arrays.

	Assignment of Array Entries
	Like variables, each array element can be assigned a value. Assigned values can be numbers or returned values from instructions, functions and keywords.
	Values are assigned to array entries using the equal sign. Assignments are made one element at a time by specifying the element number with the associated array name.
	Example:
	An array element number can also be a variable. This allows array entries to be assigned sequentially using a counter.

	Example:
	The above example records 10 position values at a rate of one value per 10 msec. The values are stored in an array named POS. Th...
	Arrays may be uploaded and downloaded using the QU and QD commands.
	QU array[],start,end,comma
	QD array[],start,end
	where array is an array name such as A[].
	Start is the first element of array (default=0)
	End is the last element of array (default=last element)
	Comma -- if comma is a 1, then the array elements are separated by a comma. If not a 1, then the elements are separated by a carriage return.
	The file is terminated using <control>Z, <control>Q, <control>D or \.

	Automatic Data Capture into Arrays
	The LEGEND-MC provides a special feature for automatic capture of data such as position, position error, inputs or torque. This ...
	Commands used:
	Data Types for Recording
	Example - Recording into An Array
	During a position move, store the X and Y positions and position error every 2 msec.

	NOTES:

	8 Input and Output of Data
	Sending Messages
	Messages may be sent to the bus using the message command, MG. This command sends specified text and numerical or string data from variables or arrays to the screen.
	Text strings are specified in quotes and variable or array data is designated by the name of the variable or array. For formatting string variables, the {Sn} specifier is required where n is the number of characters, 1 through 6. Example:
	The above statement returns 3 characters of the string variable named STR.
	Numeric data may be formatted using the {Fn.m} expression following the completed MG statement. {$n.m} formats data in HEX instead of decimal. Example:
	The above statement sends the message:
	The actual numerical value for the variable, RESULT, is substituted with the format of 5 digits to the left of the decimal and 2 to the right.
	In addition to variables, functions and commands, responses can be used in the message command. For example:
	The message command normally sends a carriage return and line feed following the statement. The carriage return and the line fee...
	Example:
	When #A is executed, the above example will appear on the screen as: The speed is 50000 counts/sec
	The MG command can also be used to configure terminals. Here, any character can be sent by using {^n} where n is any integer between 1 and 255.

	Example:
	Summary of Message Functions:
	Variables may also be sent to the screen using the variable= format. Variable Name= returns the variable value. For example, V1= , returns the value of the variable V1.

	Example - Printing a Variable
	Input of Data
	The IN command is used to prompt the user to input numeric or string data. The input data is assigned to the specified variable or array element.
	A message prompt may be sent to the user by specifying the message characters in quotes.
	Example:
	This program sends the message:
	to the PC screen or dumb terminal and waits for the operator to enter a value. The operator enters the numeric value which is as...

	Formatting Data
	Returned numeric values may be formatted in decimal or hexadecimal* with a specified number of digits to the right and left of the decimal point using the PF command.
	The Position Format (PF) command formats motion values such as those returned by the Tell Position (TP), Speed? (SP?) and Tell Error (TE) commands.
	Position Format is specified by:
	where m is the number of digits to the left of the decimal point (0 through 10) and n is the number of digits to the right of the decimal point (0 through 4) A negative sign for m specifies hexadecimal format.
	Hex values are returned preceded by a $ and in 2's complement. Hex values should be input as signed 2's complement, where negative numbers have a negative sign. The default format is PF 10.0.
	Examples:
	The following interrogation commands are affected by the PF command:
	If the number of decimal places specified by PF is less than the actual value, a nine appears in all the decimal places.

	Example:
	The Variable Format (VF) command is used to format variables and array elements. The VF command is specified by:
	VF m.n
	where m is the number of digits to the left of the decimal point (0 through 10) and n is the number of digits to the right of the decimal point (0 through 4).
	A negative sign for m specifies hexadecimal format. The default format for VF is VF 10.4
	Hex values are returned preceded by a $ and in 2's complement.
	The variable format also affects returned values from internal variables such as _GNX.
	PF and VF commands are global format commands. Parameters may also be formatted locally by using the {Fn.m} or {$n.m} specification following the variable = . For example:
	F specifies decimal and $ specifies hexadecimal. n is the number of digits to the left of the decimal, and m is the number of digits to the right of the decimal. The local format is used with the MG* command.

	Examples:

	User Units
	Variables and arithmetic operations make it easy to input data in desired user units i.e.; inches or RPM.
	For example, an operator can be prompted to input a number in revolutions. The input number is converted into counts by multiplying it by the number of counts/revolution.
	The LEGEND-MC position parameters such as PR, PA and VP have units of quadrature counts. Speed parameters such as SP, JG and VS ...
	Example:

	9 Programmable I/O
	Digital Outputs
	Each bit on the output port may be set and cleared with the software instructions SB (Set Bit) and CB(Clear Bit), or OB (define output bit).
	Example:
	The Output Bit (OB) instruction is useful for setting or clearing outputs depending on the value of a variable, array, input or expression. Any non-zero value results in a set bit.
	The output port may also be written to as an 8-bit word using the instruction
	OP (Output Port). This instruction allows a single command to define the state of the entire 8-bit output port, where 20 is output 1, 21 is output 2 and so on. A 1 designates that output is on.

	Example:
	The output port is useful for firing relays or controlling external switches and events during a motion sequence.

	Example - Turn ON Output After Move

	Digital Inputs
	The LEGEND-MC has eight digital inputs for controlling motion by local switches. The @IN[n] function returns the logic level of ...
	Example:

	10 Example Applications
	Instruction Set Examples
	Below are some examples of simple instructions. It is assumed your system is hooked-up and the motors are under stable servo control.
	Example - Jog in X only
	Jog X motor at 50000 count/s. After X motor is at its jog speed, begin jogging Z in reverse direction at 25000 count/s.

	Homing Example (HM method):
	Homing Example (FE and FI method)
	This example demonstrates how to home servos with a home sensor in the middle of a slide where it is possible for the servo to b...
	Ideally, the home sensor is a photo device. If there is a white and black strip along the slide, the photo eye will see either l...

	Example - Input Interrupt
	Example - Position Follower (Point-to-Point)
	Objective - The motor must follow an analog signal. When the analog signal varies by 10V, motor must move 10000 counts.
	Method: Read the analog input and command X to move to that point.

	Example - Position Follower (Continuous Move)
	Method: Read the analog input, compute the commanded position and the position error. Command the motor to run at a speed in proportions to the position error.

	Example - Absolute Position Movement
	Example - Motion Smoothing
	Trapezoidal velocity and smooth velocity profiles

	Cut-to-Length Example
	In this example, a length of material is to be advanced a specified distance. When the motion is complete, a cutting head is act...
	The load is coupled with a 2 pitch lead screw. A 2000 count/rev encoder is on the motor, resulting in a resolution of 4000 count...

	Latch Capture Example:
	Example - Electronic Gearing LEGEND-MC
	Objective: Run a geared motor at a speed of 1.132 times the speed of an external master. The master is driven at speeds between 0 and 1800 RPM (2000 counts/rev encoder), and is connected through the auxiliary encoder inputs.
	Solution: Use a LEGEND-MC controller, where the X-axis auxiliary is master and X-axis main is geared axis.
	Now suppose the gear ratio of the X-axis is to change on-the-fly to 2. This can be achieved by commanding:

	Contour Mode Example
	A complete program to generate the contour movement in this example is given below. To generate an array, compute the position v...

	Example of Linear Interpolation Motion:
	Generating an Array
	Consider the velocity and position profiles shown in the following illustration - Velocity Profile with Sinusoidal Acceleration....
	w = (A/B) [1 - cos (2pT/B)]
	X = (AT/B) - (A/2p)sin (2pT/B)
	In the given example, A=6000 and B=120, the position and velocity profiles are:
	X = 50T - (6000/2p) sin (2p T/120)
	Note that the velocity, w, in count/ms, is
	w = 50 [1 - cos 2p T/120]
	The 300 can compute trigonometric functions. However, the argument must be expressed in degrees. Using our example, the equation for X is written as:
	X = 50T - 955 sin 3T

	Teach (Record and Play-Back)
	Several applications require a machine motion trajectory. Use LEGEND-MC automatic array to capture position data. Captured data may be played back in contour mode. Use the following array commands:

	Record and Playback Example:
	Example - Multiple Move Sequence
	Required Motion Profiles:
	This specifies relative position movement on the X axis. The movement is separated by 40 msec.
	The following illustration - Velocity Profiles of XY shows the velocity profiles for the X and Y axis.
	Notes on Velocity Profiles of XY illustration: The X axis has a ‘trapezoidal’ velocity profile, while the Y axis has a ‘triangul...

	Example - Start Motion on Switch
	Motor X must turn at 4000 counts/sec when the user flips a panel switch to on. When panel switch is turned to off position, motor X must stop turning.
	Solution: Connect panel switch to input 1 of LEGEND-MC. High on input 1 means switch is ON.

	Examples - Input Interrupt
	Special Labels
	This program demonstrates five of the SPECIAL LABELS as part of a LEGEND-MC application program. #AUTO is usually the first line...
	#POSERR-- This special label is used to handle a situation in which a servo is not able to remain in position. The special label...
	There are three ways to return from a special label like this. The example below uses RE1; i.e., to return from the error routin...
	The second method is to do an RE, meaning that any trip points that were in progress are cleared. If thread zero was waiting for an AM command, it would continue as if the profiler had completed the path.
	The third method is to use the ZS command, which clears the subroutine stack, and the LEGEND forgets it is in the middle of an error routine. After the ZS is given, it is possible to do a JP anywhere in the
	program. Typically, there would be a jump back to a main loop where manual jogging can take place.
	The following is the special label that is automatically executed when there is a programming error, a command given where it ca...
	First, during program design when there will be many programming mistakes, it is convenient to have the program display the error and line number automatically.
	Second, it is safer to abort motion if there is a program fault. Without the AB1command, the motors will continue doing whatever they were doing before the fault. For example, if they were jogging, they will continue jogging.
	The following is the #LIMSWI special label for handling situations where limit switches ar hit during motion. This label automat...
	The following is the special label to handle input interrupts. Inputs 1 - 8 can be used as interrupts. this example uses the inp...

	Wire Cutter
	Activate the start switch. The motor will advance the wire a distance of 10". When motion stops, the controller generates an output signal activating the cutter. Allow 100 ms for cutting to complete the cycle.
	Suppose the motor drives the wire by a roller with a 2" diameter and the encoder resolution is 1000 lines per revolution. Since ...
	A distance of 10 inches equals 6370 counts, and a slew speed of 5 inches / second equals 3185 count/sec.
	The input signal may be applied to I1, and the output signal as output 1. Motor velocity profile and related input and output signals are in the following illustration - Motor Velocity and Associated Input/Output signals.
	The program starts at a state that we define as #A. Here the controller waits for the input pulse on I1. As soon as the pulse is given, the controller starts the forward motion.
	Upon completion of the forward move, the controller outputs a pulse for 20 ms and then waits an additional 80 ms before returning to #A for a new cycle.

	Speed Control by Joystick
	The speed of a motor is controlled by a joystick. The joystick produces a signal in the range between - 10V and +10V. The objective is to drive the motor at a speed proportional to the input voltage.
	Assume that a full voltage of 10 Volts must produce a motor speed of 3000 rpm with an encoder resolution of 1000 lines or 4000 count/rev. This speed equals:
	The program reads the input voltage periodically and assigns its value to the variable VIN. To get a speed of 200,000 ct/sec for 10 volts, we select the speed as
	The corresponding velocity for the motor is assigned to the VEL variable.

	Position Control by Joystick
	This system requires the position of the motor to be proportional to the joystick angle. Furthermore, the ratio between the two ...

	Backlash Compensation by Dual-Loop
	This design example addresses the basic problems of backlash in motion control systems. The objective is to control the position...
	The dilemma is where to mount the sensor. A rotary sensor, gives a 4-micron backlash error. If a linear encoder is used, the backlash in the feedback loop will cause oscillations due to instability.
	An alternative approach is the dual-loop, using two sensors, rotary and linear. The rotary sensor assures stability (because the...
	Since the required accuracy is 0.5 micron, the resolution of the linear sensor should preferably be twice finer. A linear sensor with a resolution of 0.25 micron allows a position error of +/-2 counts.
	The dual-loop approach requires the resolution of the rotary sensor to be equal or better than that of the linear system. Assumi...
	To illustrate the control method, assume that the rotary encoder is used as a feedback for the X-axis, and that the linear senso...
	The first step is to command the X motor to move to the rotary position of 1000. Once it arrives we check the position of the lo...
	The correction can be performed a few times until the error drops below +/-2 counts. Often, this is performed in one correction cycle.
	Example Motion Program:

	11 Troubleshooting
	Overview
	The following discussion may help you get your system running if a problem is encountered.
	Potential problems have been divided into groups as follows:
	The various symptoms along with the cause and the remedy are described in the following tables.

	Installation
	Stability
	Operation

	12 Index

